
devP2P library helpfile

devP2P help

Table of contents
Page Title

6 Overview

7 License Agreement

9 Initialization

10 libInit

11 libFree

12 UPNPInit

13 Globals

14 MacToText function

15 TextToMac function

16 VPNAdapter function

17 VPNAdapterCount function

18 devP2P

21 Create method

22 Destroy method

23 Properties

24 ConnectionTimeout property

25 ConnectionType property

26 Events property

28 LinkingRelayDelay property

29 LinkingRetryCount property

30 LinkingRetryDelay property

31 MediatorAddress property

32 MediatorPort property

33 MediatorRetryCount property

34 MediatorRetryDelay property

35 MyName property

36 PeerAdapterIP property

37 PeerAdapterMAC property

devP2P Table of contents Page 2 of 145

38 PeerName property

39 RelayLicense property

40 State property

41 Tag property

42 TCPPort property

43 UDPPort property

44 Methods

45 Bandwidth method

46 BandwidthReset method

47 Disconnect method

48 ErrorText method

49 GetForward method

50 Link method

52 Ping method

53 Search method

54 SendData method

55 SendFile method

56 SendText method

57 SetAdapter method

58 SetLicenseKey method

59 SetPassword method

60 Start method

61 StartForward method

63 StateText method

64 Stop method

65 StopForward method

66 TestBandwidth method

67 Version method

68 Events

69 DataReceived event

70 FileDone event

71 FileProgress event

72 FileReceive event

74 FileSend event

devP2P Table of contents Page 3 of 145

76 ForwardClose event

77 ForwardOpen event

79 LinkDone event

81 NewUPNPMapping event

83 Ping event

84 SearchDone event

86 SearchStart event

88 StateChange event

89 Stopped event

90 TextReceived event

91 UserConnected event

93 UserDisconnected event

95 devVPN

96 Create method

97 Destroy

98 Properties

99 Events property

101 MediatorAddress property

102 MediatorPort property

103 MyName property

104 State property

105 Tag property

106 Methods

107 ErrorText method

108 Search method

109 SetAdapter method

110 Start method

111 StateText method

112 Stop method

113 Events

114 PeerConnected event

115 PeerConnecting event

116 PeerDisconnected event

117 StateChange event

devP2P Table of contents Page 4 of 145

118 Objects

119 CP2PForwardUser

120 Disconnect method

121 Tag property

122 CP2PForward

123 DisconnectUser method

124 ForwardType property

125 IsOpen method

126 LocalAddress property

127 LocalPort property

128 RemoteAddress

129 RemotePort property

130 Tag property

131 CVPNInterface

132 Guid property

133 LocalIP property

134 LocalMAC property

135 LocalNetmask property

136 Name property

137 SetIP method

138 Enumerations

139 ConnectionTypes enumeration

140 Encryptions enumeration

141 Errors enumeration

143 ForwardTypes enumeration

144 Protocols enumerations

145 States enumeration

devP2P Table of contents Page 5 of 145

devP2P help - Overview

Overview
devP2P is peer-to-peer cross platform library that is used to establish Virtual Private Network between two devP2P instances over internet. All communication
between those peers is encrypted and secured. Peers are able to forward local and remote ports, send messages, transfer files, route complete network, etc.

TCP and UDP packets can be used for transport, and several techniques are available to make direct NAT 2 NAT connection between peers. And if direct connection
is not possible (in really rare cases), devP2P can be used as relay between other instances as well, or use relays to establish fast connection in 100% of the cases.

AES128/AES192/AES256 encrypts all packets between two peers using password of your choice - unbreakable security is in place! You can choose your own
passwords, or can use internal Diffie-Hellman algorithm for password generation.

devP2P can be used to connect through directly through VPN to your SQL server (which is mapped through local port), share pictures, documents and files. You can
also use it to provide "remote desktop" feature through the devP2P. Virtually any service that uses TCP or UDP can be "mapped" to work over devP2P.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Overview Page 6 of 145

devP2P help - License Agreement

License Agreement

Secure Plus d.o.o SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either an individual or an entity) and Secure Plus d.o.o. ("Secure Plus"). By installing the enclosed software, you are
agreeing to be bound by the terms of this Agreement. If you do not agree to the terms of this Agreement, promptly return the software and the accompanying items to
the place you obtained them for a full refund. If you need to return the software, you must prepay shipping and either insure the package or assume all risk of loss or
damage in transit.

Secure Plus LICENSE
1. GRANT OF LICENSE TO USE. The Secure Plus Software product that accompanies this license is referred to herein as "SOFTWARE." Secure Plus grants to you
as an individual, a personal, non-exclusive license to make and use the SOFTWARE for the sole purpose of designing, developing, and testing your software
product(s). Secure Plus grants to you the limited right to use only one copy of the Software on a single computer in the manner set forth in this agreement. If you are
an entity, Secure Plus grants you the right to designate one individual within your organization to have the right to use the SOFTWARE in the manner provided above.
Secure Plus reserves all rights not expressly granted.

2. UPDATES. Upon receipt of future updates of the SOFTWARE (including without limitation the Redistributable Code)(an "UPDATE"), you may use or transfer the
UPDATE only in conjunction with your then-existing SOFTWARE. The SOFTWARE and all UPDATES (including bug fixes and error corrections) shall be provided by
Secure Plus. To you and are licensed as a single product, and the UPDATES may not be separated from the SOFTWARE for use by more than one user at any time.

3. COPYRIGHT. The SOFTWARE is owned by Secure Plus or its suppliers and is protected by copyright laws and international treaty provisions. Therefore, you must
treat the SOFTWARE like any other copyrighted material (e.g., a book or musical recording). You may not use or copy the SOFTWARE or any accompanying written
materials for any purposes other than what is described in this Agreement. Secure Plus warrants that Secure Plus is the sole owner of all patents, copyrights or
other applicable intellectual property rights in and to the SOFTWARE unless otherwise indicated in the documentation for the SOFTWARE. Secure Plus shall defend,
indemnify, and hold Licensee harmless from any third party claims, including reasonable attorneys' fees, alleging that Software (including without limitation Sample
Code) licensed hereunder infringes or misappropriates third party intellectual property rights.

4. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written materials on a permanent
basis, provided you retain no copies and the recipient agrees to the terms of this Agreement. You may not reverse-engineer, decompile, or disassemble the
SOFTWARE except to the extent such foregoing restriction is expressly prohibited by applicable law.

5. REDISTRIBUTABLE CODE. Portions of the SOFTWARE (specifically the run time modules in binary form) are designated as "Redistributable Code", subject to the
Distribution Requirements described below.

6. SAMPLE CODE. Secure Plus grants you the right to use and modify the source code version of the included Sample Code for the sole purpose of designing,
developing, testing and supporting your software products. You may also reproduce and distribute the Sample Code in object code form along with any
modifications you make to the Sample Code, provided that you comply with the Distribution Requirements described below. For purposes of this section,
"modifications" shall mean enhancements to the functionality of the Sample Code.

7. SOURCE CODE. If you have purchased the SOFTWARE source code, you may not re-distribute the source code, nor may you copy it into your own projects.
Secure Plus retains the copyright to the SOFTWARE source code. You have no right to change or use source code for 3rd party components or applications. Source
code is provided only for your storage and protection. This agreement allows you to obtain access to fix and update the software's source code under special
circumstances, such as to provide support to your end user customers to whom you have distributed Redistributable Code in conformance with Section 8 below, or
if the Secure Plus goes out of business.

8. DISTRIBUTION REQUIREMENTS. Notwithstanding section 4 above, you are authorized to redistribute the Sample Code and/or Redistributable Code, (collectively
"REDISTRIBUTABLE COMPONENTS") as described in Sections 5 and 6, only if you
(a) distribute them in conjunction with and as part of your software product that adds primary and significant functionality to the REDISTRIBUTABLE COMPONENTS ;
(b) do not permit further redistribution of the REDISTRIBUTABLE COMPONENTS by your end-user customers ;
(c) do not use Secure Plus'es name, logo, or trademarks to market your software application product ;
(d) include a valid copyright notice on your software product ; and
(e) agree to indemnify, hold harmless, and defend Secure Plus from and against any third party claims or lawsuits, including reasonable attorney's fees, to the extent
arising or resulting from your material breach of your obligations under this agreement.
Secure Plus reserves all rights not expressly granted. The license in this section to distribute REDISTRIBUTABLE COMPONENTS is royalty-free, provided that you do
not make any modifications to any of the REDISTRIBUTABLE COMPONENTS. Contact Secure Plus for the applicable royalties due and other licensing terms for all
other uses and/or distribution of the REDISTRIBUTABLE COMPONENTS.

LIMITED WARRANTY

NO WARRANTIES. Secure Plus expressly disclaims any warranty for the SOFTWARE. The SOFTWARE and any related documentation is provided "as is" without
warranty of any kind, either express or implied, including, without limitation, the implied warranties or merchantability or fitness for a particular purpose. The entire
risk arising out of use or performance of the SOFTWARE remains with you.

CUSTOMER REMEDIES. Each party's entire liability under this license agreement shall not exceed the price paid for the SOFTWARE. NO LIABILITY FOR
CONSEQUENTIAL DAMAGES. In no event shall Secure Plus, its suppliers or you be liable for any damages whatsoever (including, without limitation, damages for

devP2P License Agreement Page 7 of 145

loss of business profits, business interruptions, loss of business information, or any other pecuniary loss) arising out of the use or inability to use this Secure Plus
product, even if such party has been advised of the possibility of such damages. The limitations and disclaimers set forth in this section do not apply to
[a] either party's obligations of indemnity stated herein or
[b] to your material breach of your obligations under this license agreement.

DEMO. The demo versions of our products are intended for evaluation purposes only. You may not use the demo version to develop completed applications.

This agreement is protected by copyright laws and international treaty provisions. If you do not agree to the terms of the license agreement, you are not allowed to
use this product or any part of it. Should you have any questions concerning this product, contact Secure Plus d.o.o.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P License Agreement Page 8 of 145

devP2P help - Initialization

Initialization
Before using devP2P, you must initialize devP2P library by calling libInit, and release all global resources using libFree functions.

If you want to use UPNP protocol for opening router ports (to help out devP2P establish direct connections), you should also call UPNPInit at the startup, after libInit.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Initialization Page 9 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Initialization-libInit.html
file:///C:/devHelp/www/export/pdf/devP2P-Initialization-libFree.html
file:///C:/devHelp/www/export/pdf/devP2P-Initialization-UPNPInit.html

bool libInit(void);
The libInit() syntax has these parts:

Return value Returns true on success.

devP2P help - libInit

libInit
Initializes devP2P library.

Syntax

Remarks
This function must be called first, once, before any usage of devP2P. It creates internal structures and classes, and prepares devP2P for usage. After calling this
method, you can call Create method as many times as you wish to obtain new instances of devP2P.

When you are done with using devP2P library, call libFree function.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Initialization libInit Page 10 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Create-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Initialization-libFree.html

void libFree(void);

devP2P help - libFree

libFree
Frees devP2P library resources.

Syntax

Remarks
libFree should be called after you have completed your work with devP2P. This function will release all internal structures. Make sure you have Destroyed all devP2P
instances cleanly before freeing the library.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Initialization libFree Page 11 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Destroy-method.html

void upnpInit(void);

devP2P help - UPNPInit

UPNPInit
Initializes UPNP (universal plug and play) network broadcast.

Syntax

Remarks
UPNP is internally used by devP2P to locate possible routers on the network, and use them to open external routing ports. If such routers are found, then each
instance of devP2P will be able to allocate and bind router's port for direct P2P connections with remote peers. devP2P will then use UPNP protocol as needed to
open/close such ports.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Initialization UPNPInit Page 12 of 145

devP2P help - Globals

Globals
Helper functions used internally by devP2P, but available to you as well.

MacToText Converts MAC address to HEX representation.

TextToMac Converts HEX text representation to MAC address.

VPNAdapter Returns reference to specific virtual network adapter.

VPNAdapterCount Total number of virtual network adapters available on the system.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Globals Page 13 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Globals-MacToText-function.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-TextToMac-function.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapter-function.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapterCount-function.html

void MacToText(unsigned char *src, char dst[18]);
The MacToText(src,dst) syntax has these parts:

src points to MAC address

dst points to destination 18 byte buffer

devP2P help - MacToText

MacToText function
Converts MAC address to HEX representation.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Globals MacToText function Page 14 of 145

void TextToMac(char *src,char *dst);
The TextToMac(src,dst) syntax has these parts:

src Souce 18 byte char array.

dst Destination byte array where MAC address is stored.

devP2P help - TextToMac

TextToMac function
Converts HEX text representation to MAC address.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Globals TextToMac function Page 15 of 145

CVPNInterface *VPNAdapter(int index);
The VPNAdapter(index) syntax has these parts:

index Integer. Index number of the interface.

Return value Reference to the VPNInterface object.

devP2P help - VPNAdapter

VPNAdapter function
Returns reference to specific virtual network adapter.

Syntax

Remarks
VPNAdapter will return reference to virtual network driver instances that are available to use by devP2P. You can get total number of interfaces using
VPNAdapterCount function.

You can share same instance of VPNAdapter between several devP2P instances, since it's needed to property route packets to more than one remote peer.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Globals VPNAdapter function Page 16 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapterCount-function.html

int VPNAdapterCount(void);
The VPNAdapterCount() syntax has these parts:

Return value Total number of interfaces.

devP2P help - VPNAdapterCount

VPNAdapterCount function
Total number of virtual network adapters available on the system.

Syntax

Remarks
To access specific interface use VPNAdapter function.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P Globals VPNAdapterCount function Page 17 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapter-function.html

devP2P help - devP2P

devP2P
Main devP2P object.

Create Creates new devP2P class instance.

Destroy Destroys current devP2P instance.

Properties

ConnectionTimeout Determines total number of milliseconds before connection drops for inactivity.

ConnectionType Returns type of transport with remote peer.

Events Reference to event handlers.

LinkingRelayDelay Total number of direct link attempts before relay is used.

LinkingRetryCount Determines how many times retry is performed during linking stage.

LinkingRetryDelay Determines delay time between linking attempts, in milliseconds.

MediatorAddress Holds IP address (or hostname) of the mediator.

MediatorPort Holds port of the mediator.

MediatorRetryCount Determines number of retries in Search method.

MediatorRetryDelay Number of milliseconds to wait between two retries to reach the mediator.

MyName Holds user defined identity ID of local devP2P peer.

PeerAdapterIP Holds IP address of remote peer for VPN.

PeerAdapterMAC Holds MAC address of remote peer for VPN.

PeerName Holds user defined identity ID of remote devP2P peer.

RelayLicense Holds license information to provide to mediator for using its relay(s).

State Returns current devP2P state.

Tag Tag for misc usage.

TCPPort Specifies local TCP port used for listening.

UDPPort Specifies local UDP port used for listening.

Methods

Bandwidth Returns calculated bandwidth usage.

BandwidthReset Resets bandwidth calculation for specific channel.

Disconnect Disconnects from remote devP2P peer.

ErrorText Returns text representation of the error.

devP2P devP2P Page 18 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Create-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Destroy-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Properties.html
file:///C:/devHelp/www/export/pdf/devP2P-ConnectionTimeout-property.html
file:///C:/devHelp/www/export/pdf/devP2P-ConnectionType-property.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRelayDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRetryCount-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRetryDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorRetryCount-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorRetryDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterIP-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterMAC-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-RelayLicense-property.html
file:///C:/devHelp/www/export/pdf/devP2P-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Tag-property.html
file:///C:/devHelp/www/export/pdf/devP2P-TCPPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-UDPPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Methods.html
file:///C:/devHelp/www/export/pdf/devP2P-Bandwidth-method.html
file:///C:/devHelp/www/export/pdf/devP2P-BandwidthReset-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Disconnect-method.html
file:///C:/devHelp/www/export/pdf/devP2P-ErrorText-method.html

GetForward Returns reference to CP2PForward object.

Link Initiates connection with remote peer.

Ping Sends internal PING packet to remote peer.

Search Searches for remote peer using mediator.

SendData Sends byte array message to remote peer.

SendFile Sends file to remote peer.

SendText Sends text message to remote peer.

SetAdapter Assigns existing adapter for network forwarding.

SetLicenseKey Sets your license key.

SetPassword Determines if devP2P traffic is encrypted.

Start Starts listening and accepting connections.

StartForward Starts port forwarding for specific forward channel.

StateText Returns text representation of the state.

Stop Stops listening for connections.

StopForward Stops specific channel forwarding.

TestBandwidth Tests bandwidth with remote peer.

Version Returns devP2P version information.

Events

DataReceived Fires when data is received from remote.

FileDone Fires when file transfer completes.

FileProgress Fires during file transfer.

FileReceive Fires when remote devP2P wants to send us a file.

FileSend Fires when local devP2P starts sending file to remote.

ForwardClose Fires when forwarding is stopped.

ForwardOpen Fires when port forwarding is open.

LinkDone Fires when devP2P links with remote devP2P instance.

NewUPNPMapping Fires when new UPnP port mapping was created.

Ping Fires when Ping packet comes from remote peer.

SearchDone Fires when Search method completes its search for remote devP2P peer.

SearchStart Fires when search has started.

StateChange Fires when devP2P changes its state.

Stopped Fires when devP2P stops working and goes offline.

TextReceived Fires when text message arrives from remote side.

devP2P devP2P Page 19 of 145

file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Ping-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendData-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendFile-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetAdapter-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetLicenseKey-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StartForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StateText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StopForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-TestBandwidth-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Version-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Events.html
file:///C:/devHelp/www/export/pdf/devP2P-DataReceived-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileProgress-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileReceive-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileSend-event.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardClose-event.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardOpen-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-NewUPNPMapping-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Ping-event.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchStart-event.html
file:///C:/devHelp/www/export/pdf/devP2P-StateChange-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Stopped-event.html
file:///C:/devHelp/www/export/pdf/devP2P-TextReceived-event.html

UserConnected Fires when user connects to forwarding channel.

UserDisconnected Fires when user disconnects from the forwarded channel.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P devP2P Page 20 of 145

file:///C:/devHelp/www/export/pdf/devP2P-UserConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-UserDisconnected-event.html

IntPtr devP2P.Create();
The Create() syntax has these parts:

Return value Reference to new created CP2P instance.

// Initialize devP2P library
devP2Plib::libInit();
devP2Plib::upnpInit();
// Give some time for UPNP to exchange packets
Sleep(200);

devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
// ... //

devP2P help - Create

Create method
Creates new devP2P class instance.

Syntax

Remarks
This is a static method that creates new instance of devP2P. After instance is successfully obtained and used, you should destroy it using Destroy method.

You should not delete the instance by yourself. Always use Destroy method instead.

Make sure you initialized the library first, by calling libInit function!

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P Create method Page 21 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Destroy-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Destroy-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Initialization-libInit.html

void devP2P.Destroy(IntPtr Handle);

devP2P help - Destroy

Destroy method
Destroys current devP2P instance.

Syntax

Remarks
This method destroys the devP2P instance, obtained by Create method. When it's not used anymore, it is internally deleted.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Destroy method Page 22 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Create-method.html

devP2P help - Properties

Properties

ConnectionTimeout Determines total number of milliseconds before connection drops for inactivity.

ConnectionType Returns type of transport with remote peer.

Events Reference to event handlers.

LinkingRelayDelay Total number of direct link attempts before relay is used.

LinkingRetryCount Determines how many times retry is performed during linking stage.

LinkingRetryDelay Determines delay time between linking attempts, in milliseconds.

MediatorAddress Holds IP address (or hostname) of the mediator.

MediatorPort Holds port of the mediator.

MediatorRetryCount Determines number of retries in Search method.

MediatorRetryDelay Number of milliseconds to wait between two retries to reach the mediator.

MyName Holds user defined identity ID of local devP2P peer.

PeerAdapterIP Holds IP address of remote peer for VPN.

PeerAdapterMAC Holds MAC address of remote peer for VPN.

PeerName Holds user defined identity ID of remote devP2P peer.

RelayLicense Holds license information to provide to mediator for using its relay(s).

State Returns current devP2P state.

Tag Tag for misc usage.

TCPPort Specifies local TCP port used for listening.

UDPPort Specifies local UDP port used for listening.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Properties Page 23 of 145

file:///C:/devHelp/www/export/pdf/devP2P-ConnectionTimeout-property.html
file:///C:/devHelp/www/export/pdf/devP2P-ConnectionType-property.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRelayDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRetryCount-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRetryDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorRetryCount-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorRetryDelay-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterIP-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterMAC-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-RelayLicense-property.html
file:///C:/devHelp/www/export/pdf/devP2P-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Tag-property.html
file:///C:/devHelp/www/export/pdf/devP2P-TCPPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-UDPPort-property.html

void devP2P.SetConnectionTimeout(IntPtr Handle, int Value);
The ConnectionTimeout(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Integer value representing connection timeout in milliseconds.

int devP2P.GetConnectionTimeout(IntPtr Handle);
The ConnectionTimeout(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current value for ConnectionTimeout property.

devP2P help - ConnectionTimeout

ConnectionTimeout property
Determines total number of milliseconds before connection drops for inactivity.

Type
Integer.

Syntax

Remarks
ConnectionTimeout property defines total number of milliseconds that remote peer is idle before connection is dropped for inactivity. devP2P sends "keep alive"
PING packet each second after certain period of inactivity, but expects from remote side to do the same. If no packet is received for defined ConnectionTimeout
value, local devP2P peer will close the connection and fire Stopped event.

Platforms
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P ConnectionTimeout property Page 24 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Stopped-event.html

int devP2P.GetConnectionType(IntPtr Handle);
The ConnectionType(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Type of established connection, from ConnectionTypes enumeration.

devP2P help - ConnectionType

ConnectionType property
Returns type of transport with remote peer.

Type
ConnectionTypes enumeration.

Syntax

Remarks
This property returns type of established connection with remote peer. Typically this will be set to ConnectionDirect, but if RelayLicense set, and devP2P used relay
to connect to remote peer, such relayed connection will be returned here so you know how you connect to remote.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P ConnectionType property Page 25 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ConnectionTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ConnectionTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-RelayLicense-property.html

P2PEventsStruct Events;
The Events() syntax has these parts:

Return value Returns pointer to internal events structure.

void p2p_StateChange(devP2Plib::CP2P *p2p, devP2Plib::States state)
{
 printf("%s] State changed to %s\r\n", p2p->MyName, p2p->StateText(state));
}

devP2P help - Events

Events property
Reference to event handlers.

Type
P2PEventsStruct structure.

Syntax

Remarks
To use specific event with devP2P, you must implement your own function that has same declaration as the event, and give a reference to P2PEventsStruct for the
function. P2PEventStruct members correspond to events, and default to NULL. Below in code samples is shown how to do it for some events.

This is the declaration of P2PEventsStruct

 typedef struct P2PEventsStruct
 {
 void (*StateChange)(CP2P *p2p, States state);
 void (*NewUPNPMapping)(CP2P *p2p, char *ExtAddress, char *IntAddress, int TCPPort, int UDPPort);
 void (*SearchStart)(CP2P *p2p, char *binds);
 void (*SearchDone)(CP2P *p2p, char *peerName, char *peerXML, char *customData, Errors error);
 void (*LinkDone)(CP2P *p2p, char *address, int port, Errors error);
 void (*Stopped)(CP2P *p2p, Errors error);
 void (*TextReceived)(CP2P *p2p, int chanid, char *text);
 void (*DataReceived)(CP2P *p2p, int chanid, char *data, int len);
 bool (*FileSend)(CP2P *p2p, int chanid, char *filename, int64 size);
 bool (*FileReceive)(CP2P *p2p, int chanid, char *filename, int64 size);
 void (*FileProgress)(CP2P *p2p, int chanid, int64 position, int64 size);
 void (*FileDone)(CP2P *p2p, int chanid, Errors error);
 bool (*ForwardOpen)(CP2P *p2p, int forwid, ForwardTypes forwardtype, char *localaddress, int localport, char
*remoteaddress, int remoteport);
 void (*ForwardClose)(CP2P *p2p, int forwid, Errors error);
 bool (*UserConnected)(CP2P *p2p, int forwid, int chanid, CP2PForwardUser *user);
 void (*UserDisconnected)(CP2P *p2p, int forwid, int chanid, CP2PForwardUser *user, Errors error);
 void (*Ping)(CP2P *p2p);
 } P2PEventsStruct;

Code sample

C++

C++

devP2P property Page 26 of 145

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void p2p_SearchStart(devP2Plib::CP2P *p2p, char *binds)
{
 printf("%s] started searching for %s at %s (%d)\r\n", p2p->MyName, p2p->PeerName, p2p-
>MediatorAddress, p2p->MediatorPort);
}
void p2p_SearchDone(devP2Plib::CP2P *p2p, char *peerName, char *peerXML, char *customData,
devP2Plib::Errors error)
{
 printf("%s] Search finished with error %d %s\r\n", p2p->MyName, error, p2p->ErrorText(error));
 if (!error)
 p2p->Link(peerXML);
}
/* */

int main(int argc, char **argv)
{
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* */
 p1->Events.SearchDone = p2p_SearchDone;
 p1->Events.SearchStart = p2p_SearchStart;
 p1->Events.StateChange = p2p_StateChange;
/* */
}

Platforms
Windows
Mac OSX
Linux
BSD

devP2P property Page 27 of 145

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void devP2P.SetLinkingRelayDelay(IntPtr Handle, int Value);
The LinkingRelayDelay(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Number of linking attempts.

int devP2P.GetLinkingRelayDelay(IntPtr Handle);
The LinkingRelayDelay(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current value of LinkingRelayDelay property.

devP2P help - LinkingRelayDelay

LinkingRelayDelay property
Total number of direct link attempts before relay is used.

Type
Integer.

Syntax

Remarks
Assuming you set your RelayLicense property, and are allowed to use the relay from the mediator, this property defines how many linking packets will be sent to
remote peer trying to establish direct connection. If connection is not established after LinkingRetryCount packets, devP2P will send packets to relay as well, and
most probably succeed in establishing relayed connection.

Note that relayed connection can be twice slower as direct one, since extra hop is used for transferring the data.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P LinkingRelayDelay property Page 28 of 145

file:///C:/devHelp/www/export/pdf/devP2P-RelayLicense-property.html

void devP2P.SetLinkingRetryCount(IntPtr Handle, int Value);
The LinkingRetryCount(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Total number of retries to exchange initial linking packet with remote peer.

int devP2P.GetLinkingRetryCount(IntPtr Handle);
The LinkingRetryCount(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current value of LinkingRetryCount property.

devP2P help - LinkingRetryCount

LinkingRetryCount property
Determines how many times retry is performed during linking stage.

Type
Integer.

Syntax

Remarks
When Link is called, devP2P sends packet to remote peer trying to establish the connection. This property defines how many packets will be sent before LinkDone
event fires with an error.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P LinkingRetryCount property Page 29 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html

void devP2P.SetLinkingRetryDelay(IntPtr Handle, int Value);
The LinkingRetryDelay(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Millisecond delay between two linking attempts.

int devP2P.GetLinkingRetryDelay(IntPtr Handle);
The LinkingRetryDelay(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current vlalue of LinkingRetryDelay property.

devP2P help - LinkingRetryDelay

LinkingRetryDelay property
Determines delay time between linking attempts, in milliseconds.

Syntax

Remarks
When Link is called, devP2P sends packet to remote peer trying to establish the connection. This property defines how much will devP2P wait between each two
retries in sending packets, in milliseconds.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P LinkingRetryDelay property Page 30 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html

void devP2P.GetMediatorAddress(IntPtr Handle, StringBuilder buffer);
The MediatorAddress(Handle,buffer) syntax has these parts:

Handle Reference to the devP2P instance.

buffer Buffer where output is stored.

void devP2P.SetMediatorAddress(IntPtr Handle, string Value);
The MediatorAddress(Handle,Value) syntax has these parts:

Handle Reference to the devP2P instance.

Value New mediator address to set.

devP2P help - MediatorAddress

MediatorAddress property
Holds IP address (or hostname) of the mediator.

Type
String.

Syntax

Remarks
Set this property to hostname of mediator that is used with Search method, together with MediatorPort property. devP2P will send mediator requests to that IP/Port to
locate and possibly request connection with remote peer.

UDP connection is used for mediator, to help with UDP hole punching for direct peer-to-peer connection. Even if you use only TCP protocol in Start method, mediator
can be used to obtain information about announced TCP ports open by remote peer.

Note that devP2P will remember this property through address reference, so keep your buffers static and valid as long as devP2P needs it. devP2P will not free or
touch allocated memory in any way.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P MediatorAddress property Page 31 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html

void devP2P.SetMediatorPort(IntPtr Handle, int Value);
The MediatorPort(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Port where mediator listens.

int devP2P.GetMediatorPort(IntPtr Handle);
The MediatorPort(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Integer value representing mediator's port.

devP2P help - MediatorPort

MediatorPort property
Holds port of the mediator.

Type
Integer.

Syntax

Remarks
Set this property to port where mediator listens for Search method, together with MediatorAddress property. devP2P will send mediator requests to that IP/Port to
locate and possibly request connection with remote peer.

UDP connection is used for mediator, to help with UDP hole punching for direct peer-to-peer connection. Even if you use only TCP protocol in Start method, mediator
can be used to obtain information about announced TCP ports open by remote peer.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P MediatorPort property Page 32 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html

void devP2P.SetMediatorRetryCount(IntPtr Handle, int Value);
The MediatorRetryCount(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Total number of retries to reach the mediator.

int devP2P.GetMediatorRetryCount(IntPtr Handle);
The MediatorRetryCount(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current value of MediatorRetryCount property.

devP2P help - MediatorRetryCount

MediatorRetryCount property
Determines number of retries in Search method.

Type
Integer.

Syntax

Remarks
After Search is called, devP2P sends packets to mediator searching for remote peer. This property defines how many packets will be sent to mediator before
SearchDone is returned with an error.

C# C++ VB.NET

devP2P MediatorRetryCount property Page 33 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html

void devP2P.SetMediatorRetryDelay(IntPtr Handle, int Value);
The MediatorRetryDelay(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Millisecond delay between two retry attempts.

int devP2P.GetMediatorRetryCount(IntPtr Handle);
The MediatorRetryDelay(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current value of MediatorRetryDelay property.

devP2P help - MediatorRetryDelay

MediatorRetryDelay property
Number of milliseconds to wait between two retries to reach the mediator.

Type
Integer.

Syntax

Remarks
After Search is called, devP2P sends packets to mediator searching for remote peer. This property defines delay between two packets, in milliseconds.
MediatorRetryCount property defines how many packets will be sent before SearchDone is returned with an error.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P MediatorRetryDelay property Page 34 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorRetryCount-property.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html

void devP2P.SetMyName(IntPtr Handle, string Value);
The MyName(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Buffer with new name for local peer.

void devP2P.GetMyName(IntPtr Handle, StringBuilder buffer);
The MyName(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current name for local peer.

devP2P help - MyName

MyName property
Holds user defined identity ID of local devP2P peer.

Type
String.

Syntax

Remarks
MyName property holds ID that is shown to remote side upon successful connection. Value isn't really important, it's just basic exchanged information about peers
when they connect, so you know in LinkDone event that you actually got connected to peer you wanted to. However, to be 100% sure in remote peer's identity, you
should use same secret password on both sides since complete traffic is encrypted with it.

However, if Search method is used, MyName can be very important since it announces your ID to the mediator - and remote peer will search for you using that ID
value. Note that devP2P will remember this property through address reference, so keep your buffers static and valid as long as devP2P needs it. devP2P will not
free or touch allocated memory in any way.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P MyName property Page 35 of 145

file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html

unsigned int PeerAdapterIP;

// To obtain string representation of the address, use code like this:
char buff[1024];
sprintf(buff, "%s", inet_ntoa(peer1->PeerAdapterIP));

devP2P help - PeerAdapterIP

PeerAdapterIP property
Holds IP address of remote peer for VPN.

Type
Unsigned integer.

Syntax

Remarks
PeerAdapterIP contains IP address of remote peer when full network traffic is routed through devP2P. It is necessary for proper redirection because Windows/Linux
sockets needs remote's IP address (together with his MAC address) so raw packets are sent to correct destination.

Usually you will leave this property empty, since it will be filled when LinkDone event fires. However, devP2P uses this information to answer Windows sockets ARP
requests, so you can even speed up packet exchange startup if you fill this value by yourself - just make sure correct IP is entered here.

In order to obtain local IP for each adapter, you should check VPNInterface's LocalIP property.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C++

C++

devP2P PeerAdapterIP property Page 36 of 145

file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-LocalIP-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/sprintf.html

unsigned char PeerAdapterMAC[6];

devP2P help - PeerAdapterMAC

PeerAdapterMAC property
Holds MAC address of remote peer for VPN.

Type
String.

Syntax

Remarks
PeerAdapterMAC holds MAC address of remote peer's VPN interface. It is needed by Windows/Linux sockets to determine where to send raw network packets. Each
Ethernet card can accept several IP addresses (and perhaps route them to other devices), so they need to 'announce' list of IP addresses that they will collect
packets for. devP2P will fill this property when LinkDone event fires. However, if you wish to speed up the process, you can fill this value by yourself on startup, so
devP2P can answer Windows/Linux sockets' questions with correct packets even sooner than VPN is established with remote peer. Typical MAC address looks like
this: 00:ff:e5:41:ae:a7.

Together with this property, you can also set PeerAdapterIP property. If this property remains empty, devP2P will fill it for you.

In order to obtain local MAC for each adapter, you should check VPNInterface's LocalMAC property.

You can use MacToText to get string representation of the MAC address.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P PeerAdapterMAC property Page 37 of 145

file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterIP-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-LocalMAC-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-MacToText-function.html

void devP2P.SetPeerName(IntPtr Handle, string Value);
The PeerName(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Buffer with new name for remote peer.

void devP2P.GetPeerName(IntPtr Handle, StringBuilder buffer);
The PeerName(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current name for remote peer.

devP2P help - PeerName

PeerName property
Holds user defined identity ID of remote devP2P peer.

Type
String.

Syntax

Remarks
PeerName property holds ID that of the peer you're connecting to. Value isn't really important for devP2P protocol, but it is used to Search remote peer on the
mediator, and when connection arrives to test if it matches what is offered by remote side. However, to be 100% sure in remote peer's identity, you should use same
secret password on both sides since complete traffic is encrypted with it.

Note that devP2P will remember this property through address reference, so keep your buffers static and valid as long as devP2P needs it. devP2P will not free or
touch allocated memory in any way.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P PeerName property Page 38 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html

void devP2P.SetRelayLicense(IntPtr Handle, string Value);
The RelayLicense(Handle,Value) syntax has these parts:

Handle Reference to the devP2P instance.

Value Licensing data.

void devP2P.GetRelayLicense(IntPtr Handle, StringBuilder buffer);
The RelayLicense(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Licensing data.

devP2P help - RelayLicense

RelayLicense property
Holds license information to provide to mediator for using its relay(s).

Type
String.

Syntax

Remarks
RelayLicense property is used when Search method is called, and you want to use relaying features from the mediator. This data is provided by your mediator in
advance, and (depending on mediator's setup) it is required to use advanced mediator relaying features.

Licensing for relays is included in devP2P to prevent from 3rd parties to use your mediator for "expensive" relaying features, in terms of CPU and bandwidth usage.
You will use this data on the mediator's side to allow specific devP2P instances to connect to your own relays or deny them.

Note that devP2P will remember this property through address reference, so keep your buffers static and valid as long as devP2P needs it. devP2P will not free or
touch allocated memory in any way.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P RelayLicense property Page 39 of 145

int devP2P.GetState(IntPtr Handle);
The State(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Current state from States enumeration.

devP2P help - State

State property
Returns current devP2P state.

Type
States enumeration.

Syntax

Remarks
State property returns current devP2P state. If devP2P is completely idle, State will hold StateStopped value. As soon as devP2P starts with some activity,
StateChange event will fire where you can keep track on devP2P's behavior.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P State property Page 40 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-StateChange-event.html

void devP2P.SetTag(IntPtr Handle, object Value);
The Tag(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Object that holds your data.

object devP2P.GetTag(IntPtr Handle);
The Tag(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Object that holds your data.

devP2P help - Tag

Tag property
Tag for misc usage.

Type
Object.

Syntax

Remarks
You can use this property to store pointer to your own custom data that will be kept by devP2P. devP2P will not interfere with this value in any way (it will not, for
example, try to free that memory).

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Tag property Page 41 of 145

void devP2P.SetTCPPort(IntPtr Handle, int Value);
The TCPPort(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Integer value representing local TCP port.

int devP2P.GetTCPPort(IntPtr Handle);
The TCPPort(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Integer value representing local TCP port.

devP2P help - TCPPort

TCPPort property
Specifies local TCP port used for listening.

Type
Integer.

Syntax

Remarks
TCPPort property defines on local TCP port where devP2P listens and accepts connections from remote peer. You can predefine it before calling Start method, in
which case devP2P will force using your port. You can also set it to 0, in which case devP2P will allocate first free port (as provided by the system) and fill this
property with allocated port.

If you're not interested which port will be allocated in Start method, it is wise to set this property to zero each time before calling the Start method, since on
subsequent Start method calls devP2P could reuse previously filled port value.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P TCPPort property Page 42 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html

void devP2P.SetUDPPort(IntPtr Handle, int Value);
The UDPPort(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Integer value representing local UDP port.

int devP2P.GetUDPPort(IntPtr Handle);
The UDPPort(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value Integer value representing local UDP port.

devP2P help - UDPPort

UDPPort property
Specifies local UDP port used for listening.

Type
Integer.

Syntax

Remarks
UDPPort property defines on local UDP port where devP2P listens and accepts connections from remote peer. You can predefine it before calling Start method, in
which case devP2P will force using your port. You can also set it to 0, in which case devP2P will allocate first free port (as provided by the system) and fill this
property with allocated port.

If you're not interested which port will be allocated in Start method, it is wise to set this property to zero each time before calling the Start method, since on
subsequent Start method calls devP2P could reuse previously filled port value.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P UDPPort property Page 43 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html

devP2P help - Methods

Methods

Bandwidth Returns calculated bandwidth usage.

BandwidthReset Resets bandwidth calculation for specific channel.

Disconnect Disconnects from remote devP2P peer.

ErrorText Returns text representation of the error.

GetForward Returns reference to CP2PForward object.

Link Initiates connection with remote peer.

Ping Sends internal PING packet to remote peer.

Search Searches for remote peer using mediator.

SendData Sends byte array message to remote peer.

SendFile Sends file to remote peer.

SendText Sends text message to remote peer.

SetAdapter Assigns existing adapter for network forwarding.

SetLicenseKey Sets your license key.

SetPassword Determines if devP2P traffic is encrypted.

Start Starts listening and accepting connections.

StartForward Starts port forwarding for specific forward channel.

StateText Returns text representation of the state.

Stop Stops listening for connections.

StopForward Stops specific channel forwarding.

TestBandwidth Tests bandwidth with remote peer.

Version Returns devP2P version information.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Methods Page 44 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Bandwidth-method.html
file:///C:/devHelp/www/export/pdf/devP2P-BandwidthReset-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Disconnect-method.html
file:///C:/devHelp/www/export/pdf/devP2P-ErrorText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Ping-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendData-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendFile-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetAdapter-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetLicenseKey-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StartForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StateText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StopForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-TestBandwidth-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Version-method.html

float devP2P.Bandwidth(IntPtr Handle, int chanid);
The Bandwidth(Handle,chanid) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

Return value Float value representing megabytes per second bandwidth usage.

void p2p_FileProgress(devP2Plib::CP2P *p2p, int chanid, int64 position, int64 size)
{
 printf("%s] Progress %ld/%ld (%d%%) bandwidth=%5.2f MB/sec\r\n", p2p->MyName, (long)position,
(long)size, (int)((position*100)/size), p2p->Bandwidth(chanid));
}

devP2P help - Bandwidth

Bandwidth method
Returns calculated bandwidth usage.

Type
Float.

Syntax

Remarks
This method returns calculated bandwidth usage for specific channel it. You can use it during, for example, file tranfers to monitor file transfer speed, since devP2P
will autocalculate it for you. You can call BandwidthReset method to reset calculation just before file transfer start, to get accurate values.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P Bandwidth method Page 45 of 145

file:///C:/devHelp/www/export/pdf/devP2P-BandwidthReset-method.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void devP2P.BandwidthReset(IntPtr Handle, int chanid);
The BandwidthReset(Handle,chanid) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

devP2P help - BandwidthReset

BandwidthReset method
Resets bandwidth calculation for specific channel.

Syntax

Remarks
Calling this function causes internal bandwidth calculation to resets to 0. You should call it before you start file transfer, if you want to get accurate bandwidth results.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P BandwidthReset method Page 46 of 145

void devP2P.Disconnect(IntPtr Handle);
The Disconnect(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

devP2P help - Disconnect

Disconnect method
Disconnects from remote devP2P peer.

Syntax

Remarks
Disconnect method will stop sending/receiving TCP/UDP traffic between local and remote devP2P, thus "closing the socket" and breaking the connection and all
ongoing transfers. All channels will be closed, and no new channels will be accepted until connection is established again.

When Disconnect is called, component will not be idle. It will still be in Listening state accepting remote connections (since any devP2P side can actually initiate it).
If you want to shut down devP2P completely, you should use the Stop method.

If possible, remote side will receive disconnect packet so it can close its connection as well. This actually depends if network stack was fast enough to send out
disconnect packet before socket is closed (applies to UDP transport).

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Disconnect method Page 47 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html

void devP2P.ErrorText(IntPtr Handle, int errorno, StringBuilder buffer);
The ErrorText(Handle,error,buffer) syntax has these parts:

Handle Reference to the devP2P instance.

error Errors value.

buffer String buffer where error text will be stored.

devP2P help - ErrorText

ErrorText method
Returns text representation of the error.

Type
String.

Syntax

Remarks
This method will return text representation of the error, in English. You can use it to show user-friendly information in your application.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P ErrorText method Page 48 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html

IntPtr devP2P.GetForward(IntPtr Handle, int index);
The GetForward(Handle,index) syntax has these parts:

Handle Reference to the devP2P instance.

index Index of the forwarded channel you want to access.

Return value CP2PForward object reference.

devP2P help - GetForward

GetForward method
Returns reference to CP2PForward object.

Type
CP2PForward object.

Syntax

Remarks
GetForward will return pointer to CP2PForward class, so you can access specific elements of the forwarded channel - such as LocalAddress, Type, etc..

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P GetForward method Page 49 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-LocalAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-ForwardType-property.html

int devP2P.Link(IntPtr Handle, string peerXML);
The Link(Handle,peerXML) syntax has these parts:

Handle Reference to the devP2P instance.

peerXML XML containing list of IP address where remote listens.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - Link

Link method
Initiates connection with remote peer.

Type
Integer.

Syntax

Remarks
The Link method will try to connect to remote devP2P. Connection is attempted both with UDP and TCP packets (based on Start method arguments). Besides
persistent TCP connection, devP2P implements "reliable UDP" connection between two peers, and forwards all traffic through it, whatever succeeds first.

In order for Link to be successful, you should provide peerXML details, structured XML containing IP and Port details, where component should try to connect to.
Typically, you will get this value in SearchDone event, but you can fill it by yourself if you know where remote peer listens, and want to try to establish direct connection
with known parameters.

If local devP2P connects to remote devP2P, LinkDone event will be fired. Initial "handshake" will be performed prior to firing this event. All packets that are sent to
remote side are encrypted using AES algorithm using key set in the SetPassword method. Both sides, of course, must use same password otherwise remote
peer's data is unreadable.

Once LinkDone event is fired, you can, for example, send text, files, or get reference to any of free forward channels (through GetForward method), set up it's
properties, and call StartForward to start forwarding traffic.

Typically, peerXML will look like this - specifies type of connection (TCP/UDP), IP and port, and possibly type of connection when specified:

<UDP Type="Mediator" IP="81.127.37.44" Port="52133"/>
<UDP IP="192.168.42.1" Port="61517"/>
<TCP IP="192.168.42.1" Port="19815"/>
<UDP IP="192.168.111.1" Port="61517"/>
<TCP IP="192.168.111.1" Port="19815"/>
<UDP IP="25.145.193.136" Port="61517"/>
<TCP IP="25.145.193.136" Port="19815"/>
<UDP IP="192.168.192.8" Port="61517"/>
<TCP IP="192.168.192.8" Port="19815"/>
<UDP IP="81.127.37.44" Port="61517"/>
<TCP IP="81.127.37.44" Port="19815"/>
<TCP Type="Relay" IP="1.2.3.4" Port="123"/>

XML elements are pretty much self explanatory. Besides setting UDP/TCP xml entry, you must define IP and Port attributes. If Type="Mediator" is set, devP2P will try to
perform "UDP Hole Punching" on specified IP/Port to penetrate through remote firewall. If Type="Relay" then devP2P will not attempt to establish connection with it
immediately, but will wait first few direct attempts, and when number of attempts defined by LinkingRelayDelay passes, it will attempt to connect through relay too.

C# C++ VB.NET

devP2P Link method Page 50 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StartForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkingRelayDelay-property.html

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Link method Page 51 of 145

int devP2P.Ping(IntPtr Handle);
The Ping(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - Ping

Ping method
Sends internal PING packet to remote peer.

Type
Integer.

Syntax

Remarks
This method initiates sending of internal Ping packet to remote. As a result, on remote Ping event will fire. It is usually used to check if remote side is still connected.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Ping method Page 52 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Ping-event.html

int devP2P.Search(IntPtr Handle, string customdata);
The Search(Handle,customdata) syntax has these parts:

Handle Reference to the devP2P instance.

customdata String buffer to send to remote peer.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - Search

Search method
Searches for remote peer using mediator.

Type
Integer.

Syntax

Remarks
Before calling Search method, make sure you set peer related properties MyName and PeerName, so devP2P knows who to search for. Also, make sure you have
set MediatorAddress and MediatorPort so we have a place to send search request to.

Search method is used to locate remote peers whose IP/Port is not known, and needs be be located. Usually, the "man in the middle", who is publicly available, is
needed so both peers can announce their presence to the mediator. When mediator finds a match, he replies to both peers with other peer's details, and finishes
communication. Mediator is NOT used to relay the data, unless specifically setup to do so.

When search completes, SearchDone event will be fired with search results, being successful or not. If successful, then you will receive information about remote
peer's possible IP/Port combinations where connection can be attempted.

You can use customdata to send to remote peer, which can be used by remote before he attempts to Link with you.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Search method Page 53 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html

int devP2P.SendData(IntPtr Handle, int chanid, string data, int len, bool reliable);
The SendData(Handle,chanid,data,len,reliable) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

data String with data.

len Total number of bytes to send.

reliable Determines if packet should be delivered in reliable way. Defaults to true.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - SendData

SendData method
Sends byte array message to remote peer.

Type
Integer.

Syntax

Remarks
SendData will send byte array to remote peer. On peer's side, DataReceived event will fire when byte array arrives. You can use this method only after connection
with remote peer is established, of course.

You should select one of 1024 available channels to send this message. Make sure that channel is not already used by file transfer, or channel forwarding. You can
send more than one message through the channel, so usually you can pick channel 0 for messages of any kind.

If you did not specify reliable method, it is possible packet never reaches the destination. This makes sense for information that is not important and possibly will be
resent (such as some status information you want to provide to remote side).

You will not get any confirmation that your message is delivered.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P SendData method Page 54 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-DataReceived-event.html

int devP2P.SendFile(IntPtr Handle, int chanid, string localfilename, string remotefilename, bool doresume);
The SendFile(Handle,chanid,localfilename,remotefilename,doresume) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

localfilename Full path to local file.

remotefilename Path where to save file on remote.

doresume Determines if file transfer should be resumed from previous position.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - SendFile

SendFile method
Sends file to remote peer.

Type
Integer.

Syntax

Remarks
This method will initiate sending file to remote peer. Remote side will receive FileSend event (to decide if it wants to accept the file), then one or more FileProgress
events, and finally FileDone when transfer finishes.

You should use one of available 1024 channels to send this file, just make sure this channel isn't already busy with transferring other file, or channel forwarding.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P SendFile method Page 55 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-FileSend-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileProgress-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html

int devP2P.SendText(IntPtr Handle, int chanid, string text, bool reliable);
The SendText(Handle,chanid,text,reliable) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

text String buffer to send.

reliable Determines if packet should be delivered in reliable way. Defaults to true.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - SendText

SendText method
Sends text message to remote peer.

Type
Integer.

Syntax

Remarks
SendText will send NULL terminated text buffer to remote peer. On peer's side, TextReceived event will fire when text arrives. You can use this method only after
connection with remote peer is established, of course.

You should select one of 1024 available channels to send this message. Make sure that channel is not already used by file transfer, or channel forwarding. You can
send more than one message through the channel, so usually you can pick channel 0 for messages of any kind.

If you did not specify reliable method, it is possible packet never reaches the destination. This makes sense for information that is not important and possibly will be
resent (such as some status information you want to provide to remote side).

You will not get any confirmation that your message is delivered.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P SendText method Page 56 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-TextReceived-event.html

int SetAdapter(CVPNInterface *adapter);
The SetAdapter(adapter) syntax has these parts:

adapter Reference to CVPNAdapter, received from VPNAdapter function.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - SetAdapter

SetAdapter method
Assigns existing adapter for network forwarding.

Type
Integer.

Syntax

Remarks
SetAdapter specifies one or local adapters to be monitored by devP2P, in order to capture network packets and forwards them to remote peer. It is used in
combination with PeerAdapterIP and PeerAdapterMAC which are provided by remote, if it also supports network packet forwarding features.

When this method is used, devP2P will capture all network packets for destination IP address and route it to remote peer, who will then give it to the system - just as
it has been received from the network card. This way you get real VPN between your two devP2P peers. In order for VPN to work, make sure selected IP addresses
of local adapter and remote peer's adapter are in same network range, and MAC addresses are setup correctly (different, unique on the network, never changed).

You can test if network packet forwarding works after you are Linkeda> with your peer with simple command prompt 'ping' command. It does not matter what OS is
running on remote.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P SetAdapter method Page 57 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface.html
file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapter-function.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterIP-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerAdapterMAC-property.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html

void devP2P.SetLicenseKey(IntPtr Handle, string Value);
The SetLicenseKey(Handle,value) syntax has these parts:

Handle Reference to the devP2P instance.

value Your license key.

devP2P help - SetLicenseKey

SetLicenseKey method
Sets your license key.

Syntax

Remarks
SetLicenseKey "unlocks" instance of devP2P to work beyond evaluation period. You can distribute devP2P with your application when your license key is set, so it
does not show any kind of 'nag screens' or notifications related to evaluation period.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P SetLicenseKey method Page 58 of 145

void devP2P.SetPassword(IntPtr Handle, int encryption, string password);
The SetPassword(Handle,encryption,password) syntax has these parts:

Handle Reference to the devP2P instance.

encryption Encryptions value, defines encryption algorithm.

password String with the password. Size depends on selected encryption algorithm.

devP2P help - SetPassword

SetPassword method
Determines if devP2P traffic is encrypted.

Syntax

Remarks
SetPassword method specifies devP2P to use some encryption algorithm and given password to encrypt all network traffic between two peers. Both sides must
choose same encryption, and same passwords, in order for communication to be established.

Besides having secure connection, this also ensures 3rd party does not connect to your devP2P peer, since with wrong password it will not be able to establish
connection in the first place.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P SetPassword method Page 59 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Encryptions-enumeration.html

int devP2P.Start(IntPtr Handle, int protocol);
The Start(Handle,protocol) syntax has these parts:

Handle Reference to the devP2P instance.

protocol Protocols value, defines which transport protocol is allowed.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - Start

Start method
Starts listening and accepting connections.

Type
Integer.

Syntax

Remarks
Start method enabled devP2P to accept incoming connections. It is first method you will run after you set MyName and PeerName properties. At this point connection
can already be established even you did not call Search or Link methods - because other peer may have done so and knows IP/Port of your peer.

You can select here if you will allow usage of TCP and/or UDP ports for transport communication. Usually you will allow both. TCP is fast and reliable, and often is
preferred. However, UDP penetrates firewalls in many cases, and will work where TCP doesn't. Our implementation of 'reliable UDP' matches speed of TCP so you
will have usually no losses if UDP connection is established (except in rare cases where network connection is really bad). You can also select TCPPort and
UDPPort where devP2P listens, or leave 0 so they are autoselected.

After Start is called, you can call Search to locate remote peer, or Link to it when you know his IP/Port where you should attempt connection. After you're done with
using devP2P, you should call Stop method.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Start method Page 60 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Protocols-enumerations.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-TCPPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-UDPPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html

int devP2P.StartForward(IntPtr Handle, int index);
The StartForward(Handle,index) syntax has these parts:

Handle Reference to the devP2P instance.

index Index of the forwarded channel.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2Plib::CP2PForward *f = devP2P->GetForward(0);
if (f)
{
 f->Type = devP2Plib::TCPSocksProxy;
 strcpy(f->LocalAddress, "127.0.0.1");
 f->LocalPort = 1080;
 success = p1->StartForward(0);
}

devP2P help - StartForward

StartForward method
Starts port forwarding for specific forward channel.

Type
Integer.

Syntax

Remarks
devP2P supports 32 forwarding channels you can setup, and each of them can provide (in theory) unlimited number of connection. For example, one such channel
would be to forward local port 80 to remote peer's port 80. Once such channel is setup and started, any number of users can connect to local port, which will be
redirected to remote. All of these connections belong to one channel.

By default all channels are setup to do nothing. When you want to enable one of forwarding channels, you should get reference to CP2PForward object at given
index (allowed 0-31) using GetForward method, set up it's properties, and then call this method to enable it and start it. When you're done using this channel, you
can call StopForward.

As users connect and start using the channel, devP2P will always assign first free channel higher than 100 to route packets for the user. When connection with that
user is closed, channel will be freed. It is, because of this, suggested NOT to use channels higher than 100 for your own data and text messages.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P StartForward method Page 61 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StopForward-method.html
http://www.opengroup.org/onlinepubs/009695399/functions/strcpy.html

devP2P StartForward method Page 62 of 145

void devP2P.StateText(IntPtr Handle, int state, StringBuilder buffer);
The StateText(Handle,state,buffer) syntax has these parts:

Handle Reference to the devP2P instance.

state States value.

buffer String buffer where state text will be stored.

devP2P help - StateText

StateText method
Returns text representation of the state.

Type
String.

Syntax

Remarks
This method will return text representation of the state, in English. You can use it to show user-friendly information in your application. Usually you will use this
method in StateChange event.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P StateText method Page 63 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-StateChange-event.html

void devP2P.Stop(IntPtr Handle);
The Stop(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

devP2P help - Stop

Stop method
Stops listening for connections.

Syntax

Remarks
Stop method will stop all activity of devP2P. It will disconnect remote peer (if connected), and will stop listening and accepting further connections. At this point you
can change devP2P's properties and it's behavior (such as change password or MyName) and Start it again.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Stop method Page 64 of 145

file:///C:/devHelp/www/export/pdf/devP2P-SetPassword-method.html
file:///C:/devHelp/www/export/pdf/devP2P-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html

int devP2P.StopForward(IntPtr Handle, int index);
The StopForward(Handle,index) syntax has these parts:

Handle Reference to the devP2P instance.

index Index of the forwarded channel.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - StopForward

StopForward method
Stops specific channel forwarding.

Type
Integer.

Syntax

Remarks
StopForward will close all forwarded connections that belong to the channel, and will not accept any new connections. It will also stop listening on specified ports
that we assigned to the channel in StartForward method.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P StopForward method Page 65 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-StartForward-method.html

int devP2P.TestBandwidth(IntPtr Handle, int chanid, long size);
The TestBandwidth(Handle,chanid,size) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Integer that specifies channel index.

size Total size of data to transmit to remote.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - TestBandwidth

TestBandwidth method
Tests bandwidth with remote peer.

Type
Integer.

Syntax

Remarks
TestBandwith is used to measure speed with remote peer. It is almost the same as SendFile, but random data is sent to remote, and remote does not store it
anywhere. It can be used to quickly check how good is your connection with remote peer. You can use Bandwidth method to obtain calculated bandwidth values.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P TestBandwidth method Page 66 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-SendFile-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Bandwidth-method.html

void devP2P.GetVersion(IntPtr Handle, StringBuilder buffer);
The Version(Handle,buffer) syntax has these parts:

Handle Reference to the devP2P instance.

buffer String buffer where version data will be stored.

devP2P help - Version

Version method
Returns devP2P version information.

Type
String.

Syntax

Remarks
This method will return version details of your devP2P instance.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Version method Page 67 of 145

devP2P help - Events

Events

DataReceived Fires when data is received from remote.

FileDone Fires when file transfer completes.

FileProgress Fires during file transfer.

FileReceive Fires when remote devP2P wants to send us a file.

FileSend Fires when local devP2P starts sending file to remote.

ForwardClose Fires when forwarding is stopped.

ForwardOpen Fires when port forwarding is open.

LinkDone Fires when devP2P links with remote devP2P instance.

NewUPNPMapping Fires when new UPnP port mapping was created.

Ping Fires when Ping packet comes from remote peer.

SearchDone Fires when Search method completes its search for remote devP2P peer.

SearchStart Fires when search has started.

StateChange Fires when devP2P changes its state.

Stopped Fires when devP2P stops working and goes offline.

TextReceived Fires when text message arrives from remote side.

UserConnected Fires when user connects to forwarding channel.

UserDisconnected Fires when user disconnects from the forwarded channel.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Events Page 68 of 145

file:///C:/devHelp/www/export/pdf/devP2P-DataReceived-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileProgress-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileReceive-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileSend-event.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardClose-event.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardOpen-event.html
file:///C:/devHelp/www/export/pdf/devP2P-LinkDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-NewUPNPMapping-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Ping-event.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SearchStart-event.html
file:///C:/devHelp/www/export/pdf/devP2P-StateChange-event.html
file:///C:/devHelp/www/export/pdf/devP2P-Stopped-event.html
file:///C:/devHelp/www/export/pdf/devP2P-TextReceived-event.html
file:///C:/devHelp/www/export/pdf/devP2P-UserConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-UserDisconnected-event.html

delegate void devP2P.DataReceivedEvent(IntPtr Handle, int chanid, String data, int len);
The DataReceived(Handle,chanid,data,len) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where data arrived.

data String with incoming data.

len Size of incoming data.

void p2p_DataReceived(devP2Plib::CP2P *p2p, int chanid, char *data, int len)
{
 printf("%s] Received %d bytes of data\r\n", p2p->MyName, len);
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.DataReceived = p2p_DataReceived;
/* ... */
}

devP2P help - DataReceived

DataReceived event
Fires when data is received from remote.

Syntax

Remarks
DataReceived event will fire as result of remote peer's SendData method call. When data arrives, devP2P will provide it through this event.

If you prefer to send/receive text messages, use SendText method and TextReceived event instead.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.DataReceived structure
member to point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P DataReceived event Page 69 of 145

file:///C:/devHelp/www/export/pdf/devP2P-SendData-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-TextReceived-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate void devP2P.FileDoneEvent(IntPtr Handle, int chanid, int errorno);
The FileDone(Handle,chanid,error) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where file is being transferred.

error Errors value, ErrorNone if operation is successful, or other value defining the error that occurred.

void p2p_FileDone(devP2Plib::CP2P *p2p, int chanid, devP2Plib::Errors error)
{
 printf("%s] Transfer completed with error %d %s\r\n", p2p->MyName, error, p2p->ErrorText(error));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.FileDone = p2p_FileDone;
/* ... */
}

devP2P help - FileDone

FileDone event
Fires when file transfer completes.

Syntax

Remarks
FileDone fires when transfer completes and file is received (or sent) by the beer. Error argument will contain possible error if transfer failed. From now channel that
was used for the transfer is freed and you can use it for some other operation.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.FileDone structure member to
point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P FileDone event Page 70 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate void devP2P.FileProgressEvent(IntPtr Handle, int chanid, Int64 position, Int64 size);
The FileProgress(Handle,chanid,position,size) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where file is being transferred.

position Current transfer position.

size Total size that will be transferred.

void p2p_FileProgress(devP2Plib::CP2P *p2p, int chanid, int64 position, int64 size)
{
 printf("%s] Progress %ld/%ld (%d%%) bandwidth=%5.2f MB/sec\r\n", p2p->MyName, (long)position,
(long)size, (int)((position*100)/size), p2p->Bandwidth(chanid));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.FileProgress = p2p_FileProgress;
/* ... */
}

devP2P help - FileProgress

FileProgress event
Fires during file transfer.

Syntax

Remarks
This event fires during file transfer, both when file is being sent and received. You can monitor it's progress and check current Bandwidth if you are interested in
transfer speed. When transfer finishes, FileDone will be fired.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.FileProgress structure
member to point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P FileProgress event Page 71 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Bandwidth-method.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate bool devP2P.FileReceiveEvent(IntPtr Handle, int chanid, string filename, Int64 size);
The FileReceive(Handle,chanid,filename,size) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where file is being transferred.

filename Path where file will be saved.

size Long integer, total size of the file that will be received.

Return value Return true if you accept file to be received. Return false to cancel the transfer.

bool p2p_FileReceive(devP2Plib::CP2P *p2p, int chanid, char *filename, int64 size)
{
 printf("%s] Receiving file %s (%ld)\r\n", p2p->MyName, filename, (long)size);
 return true;
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.FileReceive = p2p_FileReceive;
/* ... */
}

devP2P help - FileReceive

FileReceive event
Fires when remote devP2P wants to send us a file.

Type
Boolean.

Syntax

Remarks
FileReceive event fires when remote devP2P peer wants to send us a file, and we have to decide if we will accept it or not. Event provides only filename (which you
can change), and size of the file that is expected to arrive. If you return true, transfer will proceed. During the transfer, one or more FileProgress events will fire, and
when transfer completes FileDone will fire.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.FileReceive structure member
to point to your function.

Code sample

C# C++ VB.NET

C++

devP2P FileReceive event Page 72 of 145

file:///C:/devHelp/www/export/pdf/devP2P-FileProgress-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Platforms
Windows
Mac OSX
Linux
BSD

devP2P FileReceive event Page 73 of 145

delegate bool devP2P.FileSendEvent(IntPtr Handle, int chanid, string filename, Int64 size);
The FileSend(Handle,chanid,filename,size) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where file is being transferred.

filename Path to the local file.

size Long integer, total size of the file that will be sent.

Return value Return true if you accept file to be sent. Return false to cancel the transfer.

bool p2p_FileSend(devP2Plib::CP2P *p2p, int chanid, char *filename, int64 size)
{
 printf("%s] Sending file %s (%ld)\r\n", p2p->MyName, filename, (long)size);
 return true;
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.FileSend = p2p_FileSend;
/* ... */
}

devP2P help - FileSend

FileSend event
Fires when local devP2P starts sending file to remote.

Type
Boolean.

Syntax

Remarks
FileSend event fires as result of SendFile call. If all is ok on local side, this event will fire so you can get basic idea about the transfer that will be performed. If remote
side accepts it (it receives FileReceive event), one or more FileProgress events will be fired as file is being transferred. When transfer finishes, FileDone will fire.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.FileSend structure member to
point to your function.

Code sample

C# C++ VB.NET

C++

devP2P FileSend event Page 74 of 145

file:///C:/devHelp/www/export/pdf/devP2P-SendFile-method.html
file:///C:/devHelp/www/export/pdf/devP2P-FileReceive-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileProgress-event.html
file:///C:/devHelp/www/export/pdf/devP2P-FileDone-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Platforms
Windows
Mac OSX
Linux
BSD

devP2P FileSend event Page 75 of 145

delegate void devP2P.ForwardCloseEvent(IntPtr Handle, int forwardid, int errorno);
The ForwardClose(Handle,forwid,error) syntax has these parts:

Handle Reference to the devP2P instance.

forwid Index of the forwarded channel.

error Errors value, ErrorNone if operation is successful, or other value defining the error that occurred.

void p2p_ForwardClose(devP2Plib::CP2P *p2p, int forwid, devP2Plib::Errors error)
{
 printf("%s] Forward close with error %d %s\r\n", p2p->MyName, error, p2p->ErrorText(error));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.ForwardClose = p2p_ForwardClose;
/* ... */
}

devP2P help - ForwardClose

ForwardClose event
Fires when forwarding is stopped.

Syntax

Remarks
This event is fired when specific forwarding closes. At this moment, all users that were using this channel are disconnected from devP2P.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.ForwardClose structure
member to point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P ForwardClose event Page 76 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate bool devP2P.ForwardOpenEvent(IntPtr Handle, int forwardid, int forwardtype, string localaddress, int localport,
string remoteaddress, int remoteport);
The ForwardOpen(Handle,forwid,forwardtype,localaddress,localport,remoteaddress,remoteport) syntax has these parts:

Handle Reference to the devP2P instance.

forwid Forwarding channel index (0-31).

forwardtype ForwardTypes value, type of the forward.

localaddress Local address that is used for forwarding.

localport Local port that is used for forwarding.

remoteaddress Remote address that is used for forwarding.

remoteport Remote port that is used for forwarding.

Return value Return true if you accept the forwarding. If you return False, it will be cancelled.

bool p2p_ForwardOpen(devP2Plib::CP2P *p2p, int forwid, devP2Plib::ForwardTypes type, char *localaddress,
int localport, char *remoteaddress, int remoteport)
{

devP2P help - ForwardOpen

ForwardOpen event
Fires when port forwarding is open.

Type
Boolean.

Syntax

Remarks
ForwardOpen event fires when either local or remote peer has requested certain port to be forwarded to remote side. For most types both localaddress/port and
remoteaddress/port must be set, and forwarding is made fixed->fixed ports. In such cases all arguments have real values. For SOCKS and HTTP forwards,
remoteaddress is not known since it depends on user's request, so final information about the forward will be known in UserConnected event.

You can use GetForward method to obtain information about forwarding with specified forwid index. Forwarding does not use any channels yet - as users are
connecting, they will be taking free channels, and releasing them when they disconnect.

One forwarding can accept many users at once. For each user that connects to this forwarding, UserConnected event will fire so you can track users and deny
access based on your set of rules.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.ForwardOpen structure
member to point to your function.

Code sample

C# C++ VB.NET

C++

devP2P ForwardOpen event Page 77 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ForwardTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ForwardTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-UserConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-UserConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html

 const char *t = "Unknown";
 switch (type)
 {
 case devP2Plib::TCPLocalListen: t="TCPLocalListen";break;
 case devP2Plib::TCPRemoteListen: t="TCPRemoteListen";break;
 case devP2Plib::UDPLocalListen: t="UDPLocalListen";break;
 case devP2Plib::UDPRemoteListen: t="UDPRemoteListen";break;
 case devP2Plib::TCPSocksProxy: t="TCPSocksProxy";break;
 case devP2Plib::TCPHttpProxy: t="TCPHttpProxy";break;
 }
 printf("%s] Forward %s open from %s (%d) ==> %s (%d)\r\n", p2p->MyName, t, localaddress, localport,
remoteaddress, remoteport);
 return true;
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.ForwardOpen = p2p_ForwardOpen;
/* ... */
}

Platforms
Windows
Mac OSX
Linux
BSD

devP2P ForwardOpen event Page 78 of 145

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate void devP2P.LinkDoneEvent(IntPtr Handle, string address, int port, int errorno);
The LinkDone(Handle,address,port) syntax has these parts:

Handle Reference to the devP2P instance.

address IP address of remote peer.

port Port of remote peer.

void p2p_LinkDone(devP2Plib::CP2P *p2p, char *address, int port, devP2Plib::Errors error)
{
 if (!error)
 printf("%s] Connected to %s (%d)\r\n", p2p->MyName, address, port);
 else
 printf("%s] Connection failed with error %s (%d)\r\n", p2p->MyName, p2p->ErrorText(error), error);
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.LinkDone = p2p_LinkDone;
/* ... */
}

devP2P help - LinkDone

LinkDone event
Fires when devP2P links with remote devP2P instance.

Syntax

Remarks
After remote devP2P peer is located (through Search method), and Link method was called, devP2P will try to connect to remote devP2P peer. After successful link,
this event will be fired. Now you can call, for example, StartForward to begin forwarding ports between local and remote side, can send text messages etc.

Note that this event can be fired if you called Start method, and doing nothing, if remote peer initiated Link method call to you, from his side.

To obtain connection type (UDP/TCP), you can use ConnectionType property.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.LinkDone structure member to
point to your function.

Code sample

Platforms
Windows

C# C++ VB.NET

C++

devP2P LinkDone event Page 79 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-StartForward-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-ConnectionType-property.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Mac OSX
Linux
BSD

devP2P LinkDone event Page 80 of 145

delegate void devP2P.NewUPNPMappingEvent(IntPtr Handle, string ExtAddress, string IntAddress, int TCPPort, int UDPPort);
The NewUPNPMapping(Handle,ExtAddress,IntAddress,TCPPort,UDPPort) syntax has these parts:

Handle Reference to the devP2P instance.

ExtAddress IP address on UPNP device.

IntAddress Our IP address.

TCPPort TCP port on the UPNP device that forwards back to us.

UDPPort UDP port on the UPNP device that forwards back to us.

void p2p_NewUPNPMapping(devP2Plib::CP2P *p2p, char *ExtAddress, char *IntAddress, int TCPPort, int
UDPPort)
{
 if (TCPPort) printf("%s] New TCP mapping: %s->%s (%d)\r\n", p2p->MyName, ExtAddress, IntAddress,
TCPPort);
 if (UDPPort) printf("%s] New UDP mapping: %s->%s (%d)\r\n", p2p->MyName, ExtAddress, IntAddress,
UDPPort);
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.NewUPNPMapping = p2p_NewUPNPMapping;
/* ... */
}

devP2P help - NewUPNPMapping

NewUPNPMapping event
Fires when new UPnP port mapping was created.

Syntax

Remarks
NewUPnPMapping event is fired when devP2P maps external port on UPnP device (usually firewall or router device) so that remote peer can connect to that device to
establish connection with your devP2P instance. You do not need to make any special setup on your that device - as long as UPnP service is provided, devP2P will
know how to use it.

You should, however, call UPNPInit in your code to enable UPnP.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.NewUPNPMapping structure
member to point to your function.

Code sample

C# C++ VB.NET

C++

devP2P NewUPNPMapping event Page 81 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Initialization-UPNPInit.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Platforms
Windows
Mac OSX
Linux
BSD

devP2P NewUPNPMapping event Page 82 of 145

delegate void devP2P.PingEvent(IntPtr Handle);
The Ping(Handle) syntax has these parts:

Handle Reference to the devP2P instance.

devP2P help - Ping

Ping event
Fires when Ping packet comes from remote peer.

Syntax

Remarks
Ping event can be fired by auto timeout feature, which sends internal PING packets each few seconds to determine if link is still valid, when no data is transferred
during that time. You can also call Ping method by yourself to initiate this check.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P Ping event Page 83 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Ping-method.html

delegate void devP2P.SearchDoneEvent(IntPtr Handle, string peerName, string peerXML, string customData, int errorno);
The SearchDone(Handle,peerName,peerXML,customData,error) syntax has these parts:

Handle Reference to the devP2P instance.

peerName Name of the peer you are connected to.

peerXML XML containing list of IP address where remote listens.

customData Custom data provided by remote in Search method.

error Errors value, ErrorNone if operation is successful, or other value defining the error that occurred.

void p2p_SearchDone(devP2Plib::CP2P *p2p, char *peerName, char *peerXML, char *customData,
devP2Plib::Errors error)
{
 printf("%s] Search finished with error %d %s\r\n", peerName, error, p2p->ErrorText(error));
 if (!error)
 p2p->Link(peerAddress);
}

int main(int argc, char **argv)
{
/* ... */

devP2P help - SearchDone

SearchDone event
Fires when Search method completes its search for remote devP2P peer.

Syntax

Remarks
SearchDone event is fired after Search method was called, and devP2P finishes it search for remote peer. At this time this can be successful search (ErrorCode set
to ErrorNone), or some error may have been occurred.

Even search was successful, it doesn't mean you're already linked to other devP2P. At this point you have enough information to attempt to connect using Link
method - and you should do so within next few seconds otherwise IP/Port may become invalid (since your router can release his NAT translation table). It is possible
that peerName argument is different than PeerName property, in case you used wildcards in PeerName property.

Typically, you will have basic code inside this event, such as

devP2P->Link(peeraddress);

but you MUST have code similar to above in your SearchDone method. Default implementation of SearchDone does call Link method, but if you change it you
should manually call Link.
You can also inspect value of peeraddress argument, and add or remove elements from it.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.SearchDone structure
member to point to your function.

Code sample

C# C++ VB.NET

C++

devP2P SearchDone event Page 84 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Link-method.html
file:///C:/devHelp/www/export/pdf/devP2P-PeerName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.SearchDone = p2p_SearchDone;
/* ... */
}

Platforms
Windows
Mac OSX
Linux
BSD

devP2P SearchDone event Page 85 of 145

delegate void devP2P.SearchStartEvent(IntPtr Handle, int binds);
The SearchStart(Handle,binds) syntax has these parts:

Handle Reference to the devP2P instance.

binds Custom bind parameters passed to remote peer.

void p2p_SearchStart(devP2Plib::CP2P *p2p, char *binds)
{
 printf("%s] started searching for %s at %s (%d)\r\n", p2p->MyName, p2p->PeerName, p2p-
>MediatorAddress, p2p->MediatorPort);
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.SearchStart = p2p_SearchStart;
/* ... */
}

devP2P help - SearchStart

SearchStart event
Fires when search has started.

Syntax

Remarks
This event is fired after you call Start method, allowing you to specify custom bindip parameters - list of local IP/Port points where user can try to connect. It will
already contain a list like this:

T192.168.1.1 1024
U192.168.1.1 23234
T1.2.3.4 2344
U1.2.3.4 32532

etc.. It is a list of local interfaces where devP2P listens for remote peer's connection. If UPNPinit was called, and UPNP is available on your system, this list can also
contain external IP address on your router where devP2P managed to open a port that will forward back to it. However, if you're aware that some other IP/Port also
points to your devP2P instance, you can add it here, line by line - starting with 'T' for TCP, 'U' for UDP, and then following with IP, one space, port, and newline.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.SearchStart structure
member to point to your function.

Code sample

Platforms

C# C++ VB.NET

C++

devP2P SearchStart event Page 86 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Windows
Mac OSX
Linux
BSD

devP2P SearchStart event Page 87 of 145

delegate void devP2P.StateChangeEvent(IntPtr Handle, int state);
The StateChange(Handle,state) syntax has these parts:

Handle Reference to the devP2P instance.

state States value. Current state.

void p2p_StateChange(devP2Plib::CP2P *p2p, devP2Plib::States state)
{
 printf("%s] State changed to %s\r\n", p2p->MyName, p2p->StateText(state));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.StateChange = p2p_StateChange;
/* ... */
}

devP2P help - StateChange

StateChange event
Fires when devP2P changes its state.

Syntax

Remarks
StateChange event is fired each time devP2P changes its internal state. Initially it is set to StateDisconnected, but as you call devP2P's methods it will be changed to
StateListening, StateLinking etc..

Using this event you can determine whether there is anything happening with devP2P. You can access current state using State property.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.StateChange structure
member to point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P StateChange event Page 88 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate void devP2P.StoppedEvent(IntPtr Handle, int errorno);
The Stopped(Handle,error) syntax has these parts:

Handle Reference to the devP2P instance.

error Errors value, ErrorNone if operation is successful, or other value defining the error that occurred.

void p2p_Stopped(devP2Plib::CP2P *p2p, devP2Plib::Errors error)
{
 printf("%s] Stopped, error %s\r\n", p2p->MyName, p2p->ErrorText(error));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.Stopped = p2p_Stopped;
/* ... */
}

devP2P help - Stopped

Stopped event
Fires when devP2P stops working and goes offline.

Syntax

Remarks
This event fires when devP2P stops it's operation and goes offline, no matter if it was previously Connected to remote peer or not. If it stopped due to an error, Error
argument will provide info about the error. If it was result of your call to Stop method, Error will be empty. You should now call Start method again to accept new
connections.

When devP2P successfully connects to remote peer, you cannot reuse same devP2P instance, so there is no Disconnect method in devP2P. If you decide you want
to reconnect, you must use new devP2P instance (or Stop/Start current one) so internal buffers are cleared. Otherwise, devP2P could be left in unknown state -
dealing with mediator, local UDP/TCP listening sockets etc..

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.Stopped structure member to
point to your function.

Code sample

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

C++

devP2P Stopped event Page 89 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Stop-method.html
file:///C:/devHelp/www/export/pdf/devP2P-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

delegate void devP2P.TextReceivedEvent(IntPtr Handle, int chanid, string text);
The TextReceived(Handle,chanid,text) syntax has these parts:

Handle Reference to the devP2P instance.

chanid Index of the channel where data arrived.

text String that was received from remote peer.

devP2P help - TextReceived

TextReceived event
Fires when text message arrives from remote side.

Syntax

Remarks
TextReceived event is fired when remote side uses SendText method to send us short text message. On local side you can show this text to your application, or you
can use it to send/receive various short commands between devP2P peers, so that you can make certain custom actions.

If you want to send non-text (binary) data, use SendData method instead.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.TextReceived structure
member to point to your function.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P TextReceived event Page 90 of 145

file:///C:/devHelp/www/export/pdf/devP2P-SendText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-SendData-method.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html

delegate bool devP2P.UserConnectedEvent(IntPtr Handle, int forwardid, int chanid, IntPtr userhandle);
The UserConnected(Handle,forwid,chanid,user) syntax has these parts:

Handle Reference to the devP2P instance.

forwid Index of the forwarded channel.

chanid Index of the channel that user will use.

user Reference to CP2PForwardUser with user details.

Return value Return true if you accept the user, or False to disconnect him.

bool p2p_UserConnected(devP2Plib::CP2P *p2p, int forwid, int chanid, devP2Plib::CP2PForwardUser *user)
{
 printf("%s] User connected\r\n", p2p->MyName);
 return true;
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.UserConnected = p2p_UserConnected;
/* ... */
}

devP2P help - UserConnected

UserConnected event
Fires when user connects to forwarding channel.

Type
Boolean.

Syntax

Remarks
UserConnected event is fired after you have allowed user to connect and use forwarding they have chosen. From this point, user will be communicating with remote
service through encrypted channel.
There will be no further interference between devP2P and the user - all his data will be forwarded to remote devP2P peer, and vice versa. When user disconnects,
UserDisconnected event will be fired.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.UserConnected structure
member to point to your function.

Code sample

C# C++ VB.NET

C++

devP2P UserConnected event Page 91 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html
file:///C:/devHelp/www/export/pdf/devP2P-UserDisconnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Platforms
Windows
Mac OSX
Linux
BSD

devP2P UserConnected event Page 92 of 145

delegate void devP2P.UserDisconnectedEvent(IntPtr Handle, int forwardid, int chanid, IntPtr userhandle, int errorno);
The UserDisconnected(Handle,forwid,chanid,user,error) syntax has these parts:

Handle Reference to the devP2P instance.

forwid Index of the forwarded channel.

chanid Index of the channel that was used by this user.

user Reference to CP2PForwardUser with user details.

error Errors value, possible error that caused user to disconnect.

void p2p_UserDisconnected(devP2Plib::CP2P *p2p, int forwid, int chanid, devP2Plib::CP2PForwardUser *user,
devP2Plib::Errors error)
{
 printf("%s] User disconnected with error %d %s\r\n", p2p->MyName, error, p2p->ErrorText(error));
}

int main(int argc, char **argv)
{
/* ... */
 devP2Plib::CP2P *p1 = devP2Plib::CP2P::Create();
/* ... */
 p1->Events.UserDisconnected = p2p_UserDisconnected;
/* ... */
}

devP2P help - UserDisconnected

UserDisconnected event
Fires when user disconnects from the forwarded channel.

Syntax

Remarks
This event is fired when user leaves the channel. At this point he will be removed from the collection of all connected users, so this is last change to access
information about the user. If disconnection was result of an error, Error argument will contain description of the error.

Note that if UDP channel was used, UserDisconnected event may be result of user being idle for certain amount of seconds.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devP2P.Events.UserDisconnected structure
member to point to your function.

Code sample

Platforms
Windows
Mac OSX

C# C++ VB.NET

C++

devP2P UserDisconnected event Page 93 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-property.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Linux
BSD

devP2P UserDisconnected event Page 94 of 145

devP2P help - devVPN

devVPN
Provides VPN through dynamic array of devP2P instances.

Create Creates new devVPN class instance.

Destroy Destroys current devVPN instance.

Properties

Events Reference to event handlers.

MediatorAddress Holds IP address (or hostname) of the mediator.

MediatorPort Holds port of the mediator.

MyName Holds user defined identity ID of local devVPN peer.

State Returns current devVPN state.

Tag Tag for misc usage.

Methods

ErrorText Returns text representation of the error.

Search Starts searching for other peers.

SetAdapter Sets adapter to be used with devVPN.

Start Starts devVPN, and binds local interfaces.

StateText Returns text representation of the state.

Stop Stops routing network packets, and disconnects all peers.

Events

PeerConnected Fires when new peer is successfully connected.

PeerConnecting Fires when remote peer wants to connect.

PeerDisconnected Fires when peer is disconnected from devVPN.

StateChange Fires when devVPN changes its state.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN Page 95 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Create-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Destroy.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Properties.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Tag-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Methods.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-ErrorText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-SetAdapter-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Stop-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Events.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerConnecting-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerDisconnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateChange-event.html

IntPtr devVPN.Create();
The Create() syntax has these parts:

Return value Reference to new created CVPN instance.

// Initialize devP2P library
devP2Plib::libInit();
devP2Plib::upnpInit();
// Give some time for UPNP to exchange packets
Sleep(200);

devP2Plib::CVPN *v1 = devP2Plib::CVPN::Create();
// ... //

devP2P help - Create

Create method
Creates new devVPN class instance.

Syntax

Remarks
This is a static method that creates new instance of devVPN. After instance is successfully obtained and used, you should destroy it using Destroy method.

You should not delete the instance by yourself. Always use Destroy method instead.

Make sure you initialized the library first, by calling libInit function!

Code sample

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

C++

devP2P devVPN Create method Page 96 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Destroy.html
file:///C:/devHelp/www/export/pdf/devP2P-Initialization-libInit.html

void devVPN.Destroy(IntPtr Handle);

devP2P help - Destroy

Destroy
Destroys current devVPN instance.

Syntax

Remarks
This method destroys the devVPN instance, obtained by Create method. When it's not used anymore, it is internally deleted.

C# C++ VB.NET

devP2P devVPN Destroy Page 97 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Create-method.html

devP2P help - Properties

Properties

Events Reference to event handlers.

MediatorAddress Holds IP address (or hostname) of the mediator.

MediatorPort Holds port of the mediator.

MyName Holds user defined identity ID of local devVPN peer.

State Returns current devVPN state.

Tag Tag for misc usage.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN Properties Page 98 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MyName-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Tag-property.html

VPNEventsStruct Events;
The Events() syntax has these parts:

Return value Returns pointer to internal events structure.

void vpn_StateChange(devP2Plib::CVPN *vpn, devP2Plib::States state)
{
 printf("State changed to %s\r\n", vpn->StateText(state));
}

bool vpn_PeerConnecting(devP2Plib::CVPN *vpn, devP2Plib::CP2P *p2p, char *peerName, char *peerAddrs)
{
 printf("PeerConnecting %s\r\n", peerName);
 return true;
}

void vpn_PeerConnected(devP2Plib::CVPN *vpn, devP2Plib::CP2P *p2p, char *address, int port)
{
 struct in_addr ina;
 ina.s_addr = p2p->PeerAdapterIP;
 printf("PeerConnected %s, IP %s\r\n", p2p->PeerName, inet_ntoa(ina));
}

devP2P help - Events

Events property
Reference to event handlers.

Type
VPNEventsStruct structure.

Syntax

Remarks
To use specific event with devVPN, you must implement your own function that has same declaration as the event, and give a reference to VPNEventsStruct for the
function. VPNEventStruct members correspond to events, and default to NULL. Below in code samples is shown how to do it for some events.

This is the declaration of VPNEventsStruct

 typedef struct VPNEventsStruct
 {
 void (*StateChange)(CVPN *vpn, States state);
 bool (*PeerConnecting)(CVPN *vpn, CP2P *p2p, char *peerName, char *peerAddrs);
 void (*PeerConnected)(CVPN *vpn, CP2P *p2p, char *address, int port);
 void (*PeerDisconnected)(CVPN *vpn, CP2P *p2p, Errors error);
 } VPNEventsStruct;

Code sample

C++

C++

devP2P devVPN property Page 99 of 145

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void vpn_PeerDisconnected(devP2Plib::CVPN *vpn, devP2Plib::CP2P *p2p, devP2Plib::Errors error)
{
 struct in_addr ina;
 ina.s_addr = p2p->PeerAdapterIP;
 printf("PeerDisconnected %s, IP %s (%s)\r\n", p2p->PeerName, inet_ntoa(ina), vpn->ErrorText(error));
}

/* */

int main(int argc, char **argv)
{
 devP2Plib::CVPN *vpnhost;

 vpnhost = devP2Plib::CVPN::Create();
 vpnhost->Events.PeerConnected = vpn_PeerConnected;
 vpnhost->Events.PeerConnecting = vpn_PeerConnecting;
 vpnhost->Events.PeerDisconnected = vpn_PeerDisconnected;
 vpnhost->Events.StateChange = vpn_StateChange;
/* */
}

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN property Page 100 of 145

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

void devVPN.GetMediatorAddress(IntPtr Handle, StringBuilder buffer);
The MediatorAddress(Handle,buffer) syntax has these parts:

Handle Reference to the devVPN instance.

buffer Buffer where output is stored.

void devVPN.SetMediatorAddress(IntPtr Handle, string Value);
The MediatorAddress(Handle,value) syntax has these parts:

Handle Reference to the devVPN instance.

value New mediator address to set.

devP2P help - MediatorAddress

MediatorAddress property
Holds IP address (or hostname) of the mediator.

Type
String.

Syntax

Remarks
Set this property to hostname of mediator that is used with Search method, together with MediatorPort property. devVPN will send mediator requests to that IP/Port to
locate and possibly request connection with remote peer.

UDP connection is used for mediator, to help with UDP hole punching for direct peer-to-peer connection. Even if you use only TCP protocol in Start method, mediator
can be used to obtain information about announced TCP ports open by remote peer.

Note that devVPN will remember this property through address reference, so keep your buffers static and valid as long as devVPN needs it. devVPN will not free or
touch allocated memory in any way.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

devP2P devVPN MediatorAddress property Page 101 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html

void devVPN.SetMediatorPort(IntPtr Handle, int Value);
The MediatorPort(Handle,value) syntax has these parts:

Handle Reference to the devVPN instance.

value Port where mediator listens.

int devVPN.GetMediatorPort(IntPtr Handle);
The MediatorPort(Handle) syntax has these parts:

Handle Reference to the devVPN instance.

Return value Integer value representing mediator's port.

devP2P help - MediatorPort

MediatorPort property
Holds port of the mediator.

Type
Integer.

Syntax

Remarks
Set this property to port where mediator listens for Search method, together with MediatorAddress property. devVPN will send mediator requests to that IP/Port to
locate and possibly request connection with remote peer.

UDP connection is used for mediator, to help with UDP hole punching for direct peer-to-peer connection. Even if you use only TCP protocol in Start method, mediator
can be used to obtain information about announced TCP ports open by remote peer.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

devP2P devVPN MediatorPort property Page 102 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-MediatorAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html

devP2P help - MyName

MyName property
Holds user defined identity ID of local devVPN peer.

Type
String.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN MyName property Page 103 of 145

int devVPN.GetState(IntPtr Handle);
The State(Handle) syntax has these parts:

Handle Reference to the devVPN instance.

Return value Current state from States enumeration.

devP2P help - State

State property
Returns current devVPN state.

Type
States enumeration.

Syntax

Remarks
State property returns current devVPN state. If devVPN is completely idle, State will hold StateStopped value. As soon as devVPN starts with some activity,
StateChange event will fire where you can keep track on devVPN's behavior.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

devP2P devVPN State property Page 104 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateChange-event.html

void devVPN.SetTag(IntPtr Handle, object Value);
The Tag(Handle,value) syntax has these parts:

Handle Reference to the devVPN instance.

value Object that holds your data.

object devVPN.GetTag(IntPtr Handle);
The Tag(Handle) syntax has these parts:

Handle Reference to the devVPN instance.

Return value Object that holds your data.

devP2P help - Tag

Tag property
Tag for misc usage.

Type
Object.

Syntax

Remarks
You can use this property to store pointer to your own custom data that will be kept by devVPN. devVPN will not interfere with this value in any way (it will not, for
example, try to free that memory).

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

devP2P devVPN Tag property Page 105 of 145

devP2P help - Methods

Methods

ErrorText Returns text representation of the error.

Search Starts searching for other peers.

SetAdapter Sets adapter to be used with devVPN.

Start Starts devVPN, and binds local interfaces.

StateText Returns text representation of the state.

Stop Stops routing network packets, and disconnects all peers.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN Methods Page 106 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-ErrorText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-SetAdapter-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateText-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Stop-method.html

void devVPN.ErrorText(IntPtr Handle, int errorno, StringBuilder buffer);
The ErrorText(Handle,error,buffer) syntax has these parts:

Handle Reference to the devVPN instance.

error Errors value.

buffer String buffer where error text will be stored.

devP2P help - ErrorText

ErrorText method
Returns text representation of the error.

Type
String.

Syntax

Remarks
This method will return text representation of the error, in English. You can use it to show user-friendly information in your application.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C# C++ VB.NET

devP2P devVPN ErrorText method Page 107 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html

int Search(char *peerNames, char *password, bool forever);
The Search(peerNames,password,forever) syntax has these parts:

peerNames String. (Wildcard) list of accepted peer names that can connect.

password String. Password to encrypt data with remote peer.

forever Boolean. When set to True, search for other peers will not end after first match is found.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - Search

Search method
Starts searching for other peers.

Type
Integer.

Syntax

Remarks
Search method should be called after the Start method, to initiate searching for remote peers. You can search for specific peer, or for more than one peer, by setting
peerNames to contain '*' at the end of the allowed names. This way you can create one-to-many VPN connection, and devVPN will create devP2P instances on the
fly as new peers arrive.

If forever is set to True, devVPN will continue searching for new peers and added them to local collection as they arrive. This is typical usage for server kind of
applications. If you're creating client side, it is suggested to set forever to False, and possibly if connection is broken after some time re-initiate searching again.

You can call Search method anytime you wish, to start your search for different peers. When doing so, previous Search will be cancelled, and new one will be
invoked.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN Search method Page 108 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html

int SetAdapter(CVPNInterface *adapter);
The SetAdapter(adapter) syntax has these parts:

adapter Reference to CVPNinterface object, returned by VPNAdapter function.

Return value 0 (ErrorNone) if success, otherwise negative value from Errors enumeration.

devP2P help - SetAdapter

SetAdapter method
Sets adapter to be used with devVPN.

Type
Integer.

Syntax

Remarks
Before Start method is called, you must use SetAdapter to choose which adapter will be used to forward network traffic between your and remote peers. It must have
valid IP and Netmask, and all peers will also need to have IP address in same network range (defined by Netmask) in order to successfully route network packets.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN SetAdapter method Page 109 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Globals-VPNAdapter-function.html

devP2P help - Start

Start method
Starts devVPN, and binds local interfaces.

Type
Integer.

Remarks
Start method will bind local ports, open local network interface, and prepare itself to accept new peers. In order to actually locate remote peers, you should call
Search method after calling the Start.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN Start method Page 110 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html

static const char *StateText(States state);
The StateText(state) syntax has these parts:

state States value.

Return value Text representation of the state.

devP2P help - StateText

StateText method
Returns text representation of the state.

Type
String.

Syntax

Remarks
This method will return text representation of the state, in English. You can use it to show user-friendly information in your application. Usually you will use this
method in StateChange event.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN StateText method Page 111 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateChange-event.html

void Stop(void);

devP2P help - Stop

Stop method
Stops routing network packets, and disconnects all peers.

Syntax

Remarks
This methos will disconnect all peers and stop routing network packets. It will also free adapter reference, so you can make changes on the adapter. To start
devVPN again, use Start method.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN Stop method Page 112 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Start-method.html

devP2P help - Events

Events

PeerConnected Fires when new peer is successfully connected.

PeerConnecting Fires when remote peer wants to connect.

PeerDisconnected Fires when peer is disconnected from devVPN.

StateChange Fires when devVPN changes its state.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN Events Page 113 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerConnecting-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerDisconnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-StateChange-event.html

void PeerConnected(CVPN *vpn, CP2P *p2p, char *address, int port);
The PeerConnected(vpn,p2p,address,port) syntax has these parts:

vpn Pointer to devVPN instance that fired the event.

p2p Pointer to devP2P instance that is connected.

address String that contains real IP address of the peer.

port Integer that contains port of the peer.

devP2P help - PeerConnected

PeerConnected event
Fires when new peer is successfully connected.

Syntax

Remarks
This event is fired after connection with the peer is successfully established. You can now access the peer through his virtual IP address.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devVPN.Events.PeerConnected structure
member to point to your function.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN PeerConnected event Page 114 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN.html
file:///C:/devHelp/www/export/pdf/devP2P-devP2P.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html

bool PeerConnecting(CVPN *vpn, CP2P *p2p, char *peerName, char *peerAddrs);
The PeerConnecting(vpn,p2p,peerName,peerAddrs) syntax has these parts:

vpn Pointer to devVPN instance that fired the event.

p2p Pointer to devP2P instance that wants to connect.

peerName Name of the peer that wants to connect.

peerAddrs Virtual IP address of the peer that you can use to access the peer.

Return value Return True if you accept the connection with the peer.

devP2P help - PeerConnecting

PeerConnecting event
Fires when remote peer wants to connect.

Type
Boolean value.

Syntax

Remarks
After Search method is called, and mediator finds a match, this event will be fired so you can decide if you want to connect with this peer. If you want to connect,
return True, and connection will be accepted.

After connection is (successfully) established, PeerConnected event will be fired.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devVPN.Events.PeerConnecting structure
member to point to your function.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

C++

devP2P devVPN PeerConnecting event Page 115 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN.html
file:///C:/devHelp/www/export/pdf/devP2P-devP2P.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-Search-method.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-PeerConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html

devP2P help - PeerDisconnected

PeerDisconnected event
Fires when peer is disconnected from devVPN.

Remarks
This event fires after connection with specific peer was broken. Peer can be disconnected by your intention, or due to error that has occurred. If error occurred, error
argument will contain description of the error.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devVPN.Events.PeerDisconnected structure
member to point to your function.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN PeerDisconnected event Page 116 of 145

file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html

devP2P help - StateChange

StateChange event
Fires when devVPN changes its state.

Remarks
StateChange event is fired each time devVPN changes its internal state. Initially it is set to StateDisconnected, but as you call devVPN's methods it will be changed
to StateListening, StateSearching etc..

Using this event you can determine whether there is anything happening with devVPN. You can access current state using State property.

To use this event, you should implement function by yourself in the code (based on function declaration), and set devVPN.Events.StateChange structure
member to point to your function.

Platforms
Windows
Mac OSX
Linux
BSD
iPhone IOS

devP2P devVPN StateChange event Page 117 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-State-property.html
file:///C:/devHelp/www/export/pdf/devP2P-devVPN-property.html

devP2P help - Objects

Objects

CP2PForwardUser Holds information about user connected to forwarded channel.

CP2PForward Holds information about forwarding channel.

CVPNInterface Holds information about virtual network adapter.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Objects Page 118 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface.html

devP2P help - CP2PForwardUser

CP2PForwardUser
Holds information about user connected to forwarded channel.

Disconnect Disconnects user from the devP2P forwarding.

Tag Tag for misc usage.

Remarks
Reference to this object is provided in UserConnected and UserDisconnected events, as users are connecting and using your forwarded channel.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P CP2PForwardUser Page 119 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser-Disconnect-method.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser-Tag-property.html
file:///C:/devHelp/www/export/pdf/devP2P-UserConnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-UserDisconnected-event.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardOpen-event.html

void devP2P.ForwardUser_Disconnect(IntPtr UserHandle);
The Disconnect(UserHandle) syntax has these parts:

UserHandle Reference to the CP2PForwardUser instance.

devP2P help - Disconnect

Disconnect method
Disconnects user from the devP2P forwarding.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForwardUser Disconnect method Page 120 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html

void devP2P.ForwardUser_SetTag(IntPtr Handle, object Value);
The Tag(UserHandle,Value) syntax has these parts:

UserHandle Reference to the CP2PForwardUser instance.

Value Your object with custom data.

object devP2P.ForwardUser_GetTag(IntPtr Handle);
The Tag(UserHandle) syntax has these parts:

UserHandle Reference to the CP2PForwardUser instance.

Return value Your object with custom data.

devP2P help - Tag

Tag property
Tag for misc usage.

Type
Object.

Syntax

Remarks
Custom data that is kept by this user instance.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForwardUser Tag property Page 121 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html

devP2P help - CP2PForward

CP2PForward
Holds information about forwarding channel.

DisconnectUser Disconnect specific user from the forwarding.

ForwardType Determines type of the forwarding used by connected user.

IsOpen Determines if forwarding is open and accepting connections.

LocalAddress Holds local IP address of connected user.

LocalPort Holds local port of connected user.

RemoteAddress Holds remote IP address of connected user.

RemotePort Holds remote port of connected user.

Tag Tag for misc usage.

Remarks
CP2PForwarding object is used with ForwardOpen, GetForward and similar functions that deal with port forwarding.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P CP2PForward Page 122 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-DisconnectUser-method.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-ForwardType-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-IsOpen-method.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-LocalAddress-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-LocalPort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-RemoteAddress.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-RemotePort-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward-Tag-property.html
file:///C:/devHelp/www/export/pdf/devP2P-ForwardOpen-event.html
file:///C:/devHelp/www/export/pdf/devP2P-GetForward-method.html

void devP2P.Forward_DisconnectUser(IntPtr ForwardHandle, IntPtr UserHandle);
The DisconnectUser(ForwardHandle,UserHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

UserHandle Reference to CP2PForwardUser that will be disconnected.

devP2P help - DisconnectUser

DisconnectUser method
Disconnect specific user from the forwarding.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward DisconnectUser method Page 123 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForwardUser.html

void devP2P.Forward_SetForwardType(IntPtr ForwardHandle, int value);
The ForwardType(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

int devP2P.Forward_GetForwardType(IntPtr ForwardHandle);
The ForwardType(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - ForwardType

ForwardType property
Determines type of the forwarding used by connected user.

Type
ForwardTypes value.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward ForwardType property Page 124 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ForwardTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

bool devP2P.Forward_IsOpen(IntPtr ForwardHandle);
The IsOpen(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - IsOpen

IsOpen method
Determines if forwarding is open and accepting connections.

Type
Boolean.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward IsOpen method Page 125 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

void devP2P.Forward_SetLocalAddress(IntPtr ForwardHandle, string value);
The LocalAddress(ForwardHandle,value) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

value String buffer with new local address.

void devP2P.Forward_GetLocalAddress(IntPtr ForwardHandle, StringBuilder buffer);
The LocalAddress(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - LocalAddress

LocalAddress property
Holds local IP address of connected user.

Type
String.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward LocalAddress property Page 126 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

void devP2P.Forward_SetLocalPort(IntPtr ForwardHandle, int value);
The LocalPort(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

int devP2P.Forward_GetLocalPort(IntPtr ForwardHandle);
The LocalPort(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - LocalPort

LocalPort property
Holds local port of connected user.

Type
Integer.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward LocalPort property Page 127 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

void devP2P.Forward_SetRemoteAddress(IntPtr ForwardHandle, string value);
The RemoteAddress(ForwardHandle,value) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

value String buffer with new remote address.

void devP2P.Forward_GetRemoteAddress(IntPtr ForwardHandle, StringBuilder buffer);
The RemoteAddress(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - RemoteAddress

RemoteAddress
Holds remote IP address of connected user.

Type
String.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward RemoteAddress Page 128 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

int devP2P.Forward_GetRemotePort(IntPtr ForwardHandle);
The RemotePort(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - RemotePort

RemotePort property
Holds remote port of connected user.

Type
Integer.

Syntax

Platforms
Windows
Mac OSX
Linux
BSD

C# C++ VB.NET

devP2P CP2PForward RemotePort property Page 129 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

void devP2P.Forward_SetTag(IntPtr Handle, object Value);
The Tag(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

object devP2P.Forward_GetTag(IntPtr Handle);
The Tag(ForwardHandle) syntax has these parts:

ForwardHandle Reference to the CP2PForward instance.

devP2P help - Tag

Tag property
Tag for misc usage.

Type
Object.

Syntax

Remarks
Custom data that is kept by this forward instance.

Platforms
Windows
Mac OSX
Linux
BSD

C# C++

devP2P CP2PForward Tag property Page 130 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html
file:///C:/devHelp/www/export/pdf/devP2P-CP2PForward.html

devP2P help - CVPNInterface

CVPNInterface
Holds information about virtual network adapter.

Guid Returns GUID of the interface.

LocalIP Holds local IP address of the interface.

LocalMAC Holds MAC address of local interface.

LocalNetmask Holds netmask of local interface.

Name Returns name of the interface.

SetIP Attempts to set local IP and netmask for the adapter.

Remarks
CVPNInterface object holds information about each Interface (or network adapter) found on your computer that is capable of being used by devP2P. In order to use
any of those adapters you should set its IP address and Netmask, and put local peer and remote peer to same network. For example, you can set local side to
192.168.1.1 (netmask 255.255.255.0) and remote peer's IP address to 192.168.1.2 (netmask 255.255.255.0). If you use wrong IP/Netmask combination, it is
possible that sockets will not route packets correctly to remote side.

devP2P collects all raw packets from VPN adapter and routes it to remote side. Remote side then unpacks it and "pushes" to adapter so it becomes available to
sockets stack. System do not see a difference between real network adapters which are connected through cable, and our virtual network adapters which are
connected through devP2P.

Currently Windows version of devP2P supports included 'WeOnlyDo Network Adapter', but it can also use Wippien's adapter, and OpenVPN's adapter. Only one
process at a time can use one adapter, but multiple instances of devP2P in same process (inside your application) can all share same adapter.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P CVPNInterface Page 131 of 145

file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-Guid-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-LocalIP-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-LocalMAC-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-LocalNetmask-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-Name-property.html
file:///C:/devHelp/www/export/pdf/devP2P-CVPNInterface-SetIP-method.html

char Guid[1024];

devP2P help - Guid

Guid property
Returns GUID of the interface.

Type
String.

Syntax

Remarks
Guid holds unique GUID Windows assigned for the adapter. You can use this value to access the adapter directly, or to locate it in the registry to review his properties
etc.
Changing this value does not change GUID for the adapter, it only affects how devP2P sees it. Unless you know what you're doing you should not change this value.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface Guid property Page 132 of 145

unsigned int LocalIP;

devP2P help - LocalIP

LocalIP property
Holds local IP address of the interface.

Type
Unsigned integer.

Syntax

Remarks
LocalIP property holds IP address of the adapter, if set. If DHCP is enabled on the adapter then LocalIP will have value 0. You must set local IP address of the
adapter manually (through right-click on the adapter, and selecting Properties) before devP2P can use it correctly. Setting new value in LocalIP property *does not*
change real IP address of the adapter.

When setting IP address of the adapter, make sure you also set its correct Netmask. IP/Netmask combination on local side should be in same subnet as remote
peer's IP/Netmask combination. For example, you can set local IP to 192.168.1.1, and remote IP to 192.168.1.2, both having same netmask 255.255.255.0 .

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface LocalIP property Page 133 of 145

unsigned char LocalMAC[6];

devP2P help - LocalMAC

LocalMAC property
Holds MAC address of local interface.

Type
String.

Syntax

Remarks
LocalMAC property holds MAC address for the adapter. MAC address is used by system sockets to correctly route raw network packets between network adapters
(local adapters, and remote adapter). MAC address must be unique on the network. Changing this property does not really change MAC address of the adapter, it
only changes how devP2P sees the adapter (unless you know what you're doing, do not change this value).

Local MAC value is sent to remote devP2P upon connection, since remote side needs our MAC to route packets to us.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface LocalMAC property Page 134 of 145

unsigned int LocalNetmask;

devP2P help - LocalNetmask

LocalNetmask property
Holds netmask of local interface.

Type
Unsigned integer.

Syntax

Remarks
LocalNetmask property holds subnet mask of the adapter. Typically it will be something like 255.255.255.0 . Both local devP2P peer and remote devP2P peer must
have same netmask if you want them to exchange packets correctly. You should also make sure IP address for both sides is set to be inside same subnet.
Changing this property value does not actually change adapter's netmask, except for devP2P. If you want to set IP/Netmask you should use windows tools, or right-
click on the adapter and selecting Properties for it.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface LocalNetmask property Page 135 of 145

char Name[1024];

devP2P help - Name

Name property
Returns name of the interface.

Type
String.

Syntax

Remarks
Name property holds name of the virtual network adapter, as seen in Windows 'Network adapters' folder. You can change this value but that change will only affect
devP2P, you cannot change real adapter's name.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface Name property Page 136 of 145

void SetIP(char *ip, char *netmask);
The SetIP(ip,netmask) syntax has these parts:

ip NULL terminated data buffer with new IP address.

netmask NULL terminated data buffer with new IP address.

devP2P help - SetIP

SetIP method
Attempts to set local IP and netmask for the adapter.

Syntax

Remarks
SetIP will attempt to set new IP/Netmask values for the interface. It is assumed that process have root/Administrator privileges when calling this method. On
Windwos, this method will call 'netsh' command, and on UNIXes it will call 'ifconfig' for setting up parameters.

Platforms
Windows
Mac OSX
Linux
BSD

C++

devP2P CVPNInterface SetIP method Page 137 of 145

devP2P help - Enumerations

Enumerations

ConnectionTypes Lists type of connection established with remote peer.

Encryptions List of encryption algorithms that can be used to protect the traffic.

Errors List of errors that can be returned by devP2P.

ForwardTypes Channel types available for port forwarding.

Protocols Determines which protocol(s) can be used for connection between two devP2P instances.

States List of possible devP2P states.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations Page 138 of 145

file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ConnectionTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Encryptions-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Errors-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-ForwardTypes-enumeration.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-Protocols-enumerations.html
file:///C:/devHelp/www/export/pdf/devP2P-Enumerations-States-enumeration.html

devP2P help - ConnectionTypes

ConnectionTypes enumeration
Lists type of connection established with remote peer.

Remarks
Possible values for ConnectionTypes:

Constant Value Description

ConnectionUnspecified 0 Unknown connection type.

ConnectionTCPDirect 1 Direct TCP connection established with remote peer.

ConnectionUDPDirect 2 Direct UDP connection established with remote peer.

ConnectionTCPRelayed 3 Relayed TCP connection established with remote peer.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations ConnectionTypes enumeration Page 139 of 145

devP2P help - Encryptions

Encryptions enumeration
List of encryption algorithms that can be used to protect the traffic.

Remarks
Possible values for Encryptions:

Constant Value Description

EncNone 0 No encryption is used.

EncAES128 1 AES with 128bit key.

EncAES192 2 AES with 192bit key.

EncAES256 3 AES with 256bit key.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations Encryptions enumeration Page 140 of 145

devP2P help - Errors

Errors enumeration
List of errors that can be returned by devP2P.

Remarks
Possible values for Errors:

Constant Value Description

ErrorNone 0 No error.

ErrorStopped -1 devP2P is not started.

ErrorDisconnected -2 Disconnected.

ErrorTimeout -3 Timeout error.

ErrorNameNotSet -4 Name not set.

ErrorCannotBind -5 Cannot bind socket.

ErrorCancelled -6 Cancelled.

ErrorAborted -7 Aborted.

ErrorDisconnectedByRemote -8 Disconnected by remote.

ErrorConnectionRefused -9 Connection refused.

ErrorConnectionBroken -10 Connection broken.

ErrorChannelInvalid -11 Channel invalid.

ErrorChannelFull -12 Channel full.

ErrorChannelBusy -13 Channel busy.

ErrorCannotOpenFile -14 Cannot open file.

ErrorCannotReadFile -15 Cannot read from file.

ErrorCannotWritefile -16 Cannot write to file.

ErrorForwardStarted -17 Forward channel already started.

ErrorForwardInvalid -18 Forward channel invalid.

ErrorCannotOpenAdapter -19 Cannot open adapter.

ErrorLicenseInvalid -20 License invalid.

ErrorNameInvalid -21 Name invalid.

ErrorAdapterInvalid -22 Adapter invalid.

ErrorAdapterInvalidIP -23 Adapter has invalid IP.

ErrorAdapterExistingIP -24 Adapter uses existing IP.

devP2P Enumerations Errors enumeration Page 141 of 145

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations Errors enumeration Page 142 of 145

devP2P help - ForwardTypes

ForwardTypes enumeration
Channel types available for port forwarding.

Remarks
Possible values for ForwardTypes:

Constant Value Description

TCPLocalListen 0 Listens on local TCP port, forwards connection through devP2P to remote address.

TCPRemoteListen 1 Listens on remote TCP port, forwards connection through devP2P to local address.

UDPLocalListen 2 Listens on local UDP port, forwards connection through devP2P to remote address.

UDPRemoteListen 3 Listens on remote UDP port, forwards connection through devP2P to remote address.

TCPSocksProxy 4 Listens on local TCP port, forwards connection through devP2P to dynamicaly chosen address, using SOCKS4/4a/5 protocol.

TCPHttpProxy 5 Listens on local TCP port, forwards connection through devP2P to dynamicaly chosen address, WEB CONNECT protocol.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations ForwardTypes enumeration Page 143 of 145

devP2P help - Protocols

Protocols enumerations
Determines which protocol(s) can be used for connection between two devP2P instances.

Remarks
Possible values for Protocols:

Constant Value Description

ProtoTCP 1 Use TCP for transport protocol.

ProtoUDP 2 Use UDP for transport protocol.

ProtoBoth 3 Use both TCP and UDP for transport protocol.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations Protocols enumerations Page 144 of 145

devP2P help - States

States enumeration
List of possible devP2P states.

Remarks
Possible values for Protocols:

Constant Value Description

StateStopped 0 Stopped. Does not accept connections.

StateStarted 1 Started and idle listening. Accepts other devP2P connections.

StateSearching 2 Searching for remote devP2P peer.

StateSearchDone 3 Finished searching remote peer.

StateLinking 4 Attempting to link with remote devP2P peer.

StateConnected 5 Connected and linked with remote devP2P peer.

StateDisconnecting 6 Disconnecting from remote devP2P peer.

StateDisconnected 7 Disconnected from remote peer.

Platforms
Windows
Mac OSX
Linux
BSD

devP2P Enumerations States enumeration Page 145 of 145

